
Linear Programming Assisted Genetic Algorithm

for Solving a Comprehensive Job shop Lot

Streaming Problem

by

Saber Bayat Movahed

A Thesis

presented to

The University of Guelph

In partial fulfilment of requirements

for the degree of

Master of Applied Science

in

Engineering

Guelph, Ontario, Canada

c© Saber Bayat Movahed, February, 2014

ABSTRACT

LINEAR PROGRAMMING ASSISTED GENETIC

ALGORITHM FOR SOLVING A COMPREHENSIVE

JOB SHOP LOT STREAMING PROBLEM

Saber Bayat Movahed Advisor:

University of Guelph, 2014 Professor F.M. Defersha

The hybridization of metaheuristics with other techniques for optimization has

been one of the most interesting trends in recent years. The focus of research on

metaheuristics has also notably shifted from an algorithm-oriented point of view to a

problem-oriented one. Many researchers focus on solving a problem at hand as best

as possible rather than promoting a certain metaheuristic. This has led researchers to

try combining different algorithmic components in order to design algorithms that are

more powerful than the ones resulting from the implementation of a pure metaheuristic.

In this thesis, a linear programming assisted genetic algorithm is developed for solv-

ing a flexible job-shop scheduling problem with lot streaming. The genetic algorithm

searches over both discrete and continuous variables in the problem/ solution space.

Linear programming model is used to further refine promising solutions in the initial

population and during the genetic search process by determining the optimal values of

the continuous variables corresponding to the values of the integer variables of these

promising solutions. Numerical examples showed that the hybridization of the genetic

algorithm with the linear programming greatly improves its convergence behavior.

Keywords: Flexible Job-shop Scheduling; Lot Streaming; Hybrid Genetic Algorithm;

Linear Programming.

Dedicated to my mother and father, Susan and Reza

ACKNOWLEDGEMENTS

First and foremost, I would like to express my most sincere gratitude and ap-

preciation to my wonderful supervisor, Professor Dr. Fantahun Defersha, whose

support, insight and patience have been invaluable throughout my time at the

University of Guelph. I can not thank him enough for the time and effort he spent

in teaching and guiding me through my research. Without his advice, guidance

and encouragement this MASc thesis would not have been achievable. I also

would like to extend my acknowledgement to my advisory committee member,

Professor Dr. Soha Moussa, for reviewing my thesis and the knowledge I have

gained from her lectures.

My most heartfelt thanks go to my beloved parents for their endless support

and unwavering encouragement. I am greatly indebted to them for the countless

sacrifices they have made for me throughout my life. I would also like to express

my special thank to my brother Hanif who is the greatest indirect contributor to

this thesis. He gave me tremendous support and encouragements during my stay

in Canada. Also, I am deeply thankful to my brother Saeed for his continuous

love and support despite the long distance between us.

iii

TABLE OF CONTENTS

ABSTRACT . i

LIST OF FIGURES . vi

LIST OF TABLES . vii

LIST OF SYMBOLS . viii

LIST OF ACRONYMS . xii

1 Introduction 1

1.1 Machine Scheduling . 1

1.1.1 Machine environment . 2

1.1.2 Job and resource characteristics 7

1.1.3 Optimality criteria in scheduling problems 11

1.2 Lot streaming . 13

1.3 Lot streaming terminology . 16

1.4 A classification scheme . 18

1.5 Research in this thesis . 22

1.6 Organization of the thesis . 22

2 Literature Review 23

2.1 Introduction . 23

2.2 Hybrid metaheuristics . 24

2.2.1 Hybridization of evolutionary algorithms 26

2.2.2 Hybrid genetic algorithm 27

2.3 Machine scheduling problems . 28

2.3.1 Flow shop scheduling with lot streaming 28

2.3.2 Job shop scheduling with lot streaming 30

2.4 Concluding Remarks . 31

iv

3 Mathematical Model 33

3.1 Preliminary study . 34

3.1.1 Notations for introductory mathematical models 34

3.1.2 Sequence-position variable based models for FJSP 35

3.1.3 Precedence variable based models for FJSP 37

3.1.4 Time-indexed models for FJSP 40

3.1.5 FJSP model with sequence-dependent setup time 41

3.2 Problem Description and Notations 43

3.3 MILP Model for FJSP-LS . 45

4 The Proposed Algorithm 49

4.1 Pure Genetic Algorithm . 49

4.1.1 Selection operator . 54

4.1.2 Crossover operators . 54

4.1.3 Mutation operators . 58

4.1.4 Fitness evaluation in pure GA 60

4.2 Linear Programming Subproblem 62

4.3 Steps of the Algorithm . 65

4.4 Implementation Techniques . 67

5 Numerical Example 72

5.1 Model illustration . 72

5.2 Computational Performance . 77

5.3 Empirical Study . 82

6 Research Outline 83

6.1 Summary and Conclusion . 83

6.2 Future Research and Recommendations 84

Bibliography 86

v

LIST OF FIGURES

1.1 An example of work flow in a classic flow shop 6

1.2 An example of work flow in a classic job shop 7

1.3 An example of lot streaming in a classic flow shop 15

1.4 An example of lot streaming in a classic job shop 16

4.1 Solution representation for solving the FJSP using GA 51

4.2 Representation of the assignment of operations to machines and their

sequencing . 52

4.3 Solution representation used in this thesis to solve the FJSP-LS using GA 54

4.4 Operation-to-machine assignment crossover (OMAC) operator 56

4.5 Job level operation sequence crossover (JLOSC) operator 56

4.6 Single point crossover operators (SPC-1 and SPC-2) 57

4.7 Random operation assignment mutation operator 59

4.8 Linear programming assisted genetic algorithm flowchart 66

5.1 Schedule for problem-1: (a) solved by Pure GA (b) Solved by Proposed

Hybrid GA Note: The detailed numerical values of the starting and the

ending times of the setups and the operations are given in Table 5.3. . . 75

5.2 Performance improvement through parallelization of the genetic algo-

rithm as the number of processor is increased from 1 to 8, 16, 24, 32,

and to 48. 80

5.3 Performance improvement through using the proposed hybrid GA . . . 80

5.4 Average convergence of the SGA, PGA and HGA for problems 2, 3, 4,

and 5. 81

5.5 The effect of changing genetic parameters on the final solution quality

obtained by the SGA and HGA in solving problem 2 82

vi

LIST OF TABLES

1.1 Four field classification scheme . 18

4.1 An example small flexible job-shop problem (FJSP) 50

4.2 An example small flexible job-shop problem with lot streaming (FJSP-LS) 52

4.3 Operation assignment and sequencing decoded from Figure 4.2 52

5.1 Processing Data for Jobs . 73

5.2 Sequence Dependent Setup Time Data 74

5.3 The details of the schedules shown in Figure 5.1 76

5.4 The general nature of the problems considered 78

5.5 Genetic parameters used for the test runs 79

vii

LIST OF SYMBOLS

Ao,j A binary data equal to 1 if setup of operation o of a sublot of

job j is attached (non-anticipatory), or 0 if this setup is detached

(anticipatory)

Bj The number of parts in a batch of job j

block A system with limited buffer between the workstations

brkdwn A system where machine breakdowns are considered

bs,j Size of sublot s of job j

btchj A system where jobs are made in bulks, however, lot sizing is not

permitted

btchls A system where jobs are made in bulks, and lot sizing is permitted

btchm A system where machines with ability of batch processing exit

chain A system where precedence relation is in form of a chain

cmax Makespan of the schedule

co,j Completion time of operation o of job j

co,j,m Completion time of operation o of job j on machine m

co,s,j,m Completion time of operation o of sublot s of job j on machine m

ĉr,m Completion time of the rth run of machine m

d Degeneration limit

Dc A system with continuous sublots

Dd A system with discrete sublots

Dm Machine m release date

Em A set of operation, which can be performed on machine m

Ffc Flexible flow shop system

viii

FixN A system where number of sublots in each lot is predetermined

FJm Flexible job shop system

FlexN A system where number of sublots in each lot is not given

Fm Flow shop system

j Job index

J Maximum number of jobs

Jm Job shop system

L1 Single product system

Ln Multi products system

lag A system where with there are time lags between successive oper-

ations of a job

Lmax Maximum lateness

Lo,j The amount of time which operation o of a sublot of job j must

wait (lag time) before being processed on eligible machine m

M Maximum number of machines

m Machine index

Mo,j A set of eligible machines of operation o of job j

Ni A system where machines are not allowed to have idle time.

nwt A system where a particular job must never stop between two con-

secutive workstations

o Operation index

Oj Maximum number of operations of job j

Om Open shop system

Pa A system with detached setup time for certain machines

Pm A system with identical parallel machines

Pn A system with attached setup time for all machines

ix

Po,j,m A binary data equal to 1 if operation o of job j can be processed

on machine m, 0 otherwise

prec A system where precedence relation is in form of an arbitrary

acyclic graph

prmp A system with preemption

Qm A system with uniform parallel machines

qo,j,m Starting time of operation o of job j on machine m

q̂r,m Starting time of production run r of machine m

r Run index

rj A system with release date for jobs

Rm Maximum number of production runs of machine m

rm A system with release date for machines

Rm A system with unrelated parallel machines

routf A system with routing flexibility

s Sublot index

Sj Maximum number of sublots of job j

Sjk A system where setup time for a job is only dependent on the

preceding job

Sk A system with sequence independent setup times

Smjk A system where Setup time for a job is dependent on the machine

in addition to the preceding job

S∗o,j,m Setup time for operation o of sublot s of job j if it is the first

operation to be processed on machine m

Somjk A system setup time for a job is dependent on it operation in

addition to the machine and the preceding job

So,j,m,o′,j′ Setup time for operation o of a sublot of job j, where operation o′

of a sublot of job j′ is the preceding operation on machine m

x

Si A system where sublots from different lots can be intermingled

Sn A system where sublots from different lots are not allowed to be

intermingled

to,j Processing time of operation o of job j, after select a machine

To,j,m Unit processing time for operation o of job j on machine m

Tc A system with consistent sublot sizes

Tf A system with fixed sublot sizes

Tq A system with equal sublot sizes

tree A system where precedence relation is in form of a tree

Tv A system with variable sublot sizes

vo,j,o′,j′,m A binary variable that takes the value 1 if the oth operation of

job j has precedence over o′th operation of job j′ on machine m, 0

otherwise

v̂o,j,o′,j′,m A binary variable that takes the value 1 if the o′th operation of job

j′ must be processed immediately after completion of oth operation

of job j on machine m, 0 otherwise

wo,j Starting time of operation o of job j

xr,m,o,j A binary variable which takes the value 1 if the rth run on machine

m is for operation o of job j, 0 otherwise

xr,m,o,s,j A binary variable which takes the value 1 if the rth run on machine

m is for operation o of sublot s of job j, 0 otherwise

ym,o,j A binary variable which takes the value 1 if operation o of job j is

performed on machine m,0 otherwise

yr,m,o,j A binary variable which takes the value 1 if the rth run on machine

m is for operation o of any one of the sublots of job j, 0 otherwise

zr,m A binary variable that takes the value 1 if the rth potential run of

machine m has been assigned to an operation, 0 otherwise

xi

α A field which represents machine environment

αs,j Represents each gene in the left hand side of the chromosome, which

takes a random value in the interval [0, 1]

β A field which represents job and resource characteristics

β′ A field which represents sublot-related features

γ A field which represents optimality criteria

γs,j A binary variable that takes the value 1 if sublot s of job j is

non-zero (bs,j ≥ 1), 0 otherwise

Θ Step amount

ρ Crossover probability

σ Mutation probability

Ω Large positive number∑
wjCj Total weighted flow time∑
wjTj Total weighted tardiness∑
wjUj Weighted number of tardy tasks

xii

LIST OF ACRONYMS

ACO Ant Colony Optimization

AI Artificial Intelligence

BB Branch and Bound

CS Computer Science

EA Evolutionary Algorithm

EP Evaluation Programming

ES Evaluation Strategy

FJSP Flexible Job Shop Scheduling Problem

FJSP-LS Flexible Job Shop Scheduling Problem with Lot Streaming

FNJS Fixed Number Job Splitting

FSSP Flow Shop Scheduling Problem

GA Genetic Algorithm

GAJS Genetic Algorithm based on Job Splitting

GT Group Technology

HEA Hybrid Evolutionary Algorithm

HFS Hyrbid Flow Shop

HGA Hybrid Genetic Algorithm

HPSO Hybrid Particle Swarm Optimization

IOAM Intelligent Operations Assignment Mutation

JIT Just-In-Time

JLOSC Job level operation Sequence Crossover

JSP Job Shop Scheduling Problem

LHS Left Hand Side

xiii

LP Linear Programming

LRH Low-level rely hybrid

LS Lot Streaming

MILP Mixed Integer-Linear Programming

MLT Manufacturing Lead Time

NGA New Genetic Algorithm

OMAC Operation-to-Machine Assignment Crossover

OR Operations Research

OSSM Operations Sequence Shift Mutation

OSSP Open Shop Scheduling Problem

PGA Parallel Genetic Algorithm

PI Pairwise Interchange

PMS Parallel Machine Scheduling

RHS Right Hand Side

ROAM Random Operation Assignment Mutation

SA Simulated Annealing

SGA Sequential Genetic Algorithm

SLOSC Sublot Level Operation Sequence Crossover

SMS Single Machine Scheduling

SPC Single Point Crossover

SSD Sublot Size Degenerator

SStM Sublot Step Mutation

SSwM Sublot Swap Mutation

TBC Time-Based Competition

TS Tabu Search

WIP Work-In-Process

xiv

Chapter 1

Introduction

Scheduling is a decision-making process, which has become an imperative re-

quirement for survival of various industries in the current competitive market-

place. Henry Gantt was among the pioneers who considered the significance of

scheduling in manufacturing industries in 1910’s (Pinedo, 2012). Nevertheless,

research on scheduling theory did not receive considerable attention until the

early 1950’s. The research on scheduling theory is prompted by the wide range

of its application in both industry and non-industry areas including production

planning, computer control, agriculture, hospitals, transportation, etc. Gener-

ally, scheduling is an ongoing process of allocating a limited variety of resources

to tasks over time, so as to optimize one or more objectives (Aarts and Lenstra,

1997; Lawler et al., 1993). In this thesis, we restrict our attention to machine

scheduling problems.

1.1. Machine Scheduling

A general machine scheduling problem consists of two sub problems: (1) allo-

cation and (2) sequencing problems. When using a number of machines or

1

Chapter 1. Introduction

processors to process a number of items or jobs, each having one or more op-

erations or tasks or activities, generally the operations must be performed in a

specified order on various eligible machines. In this situation, given an objective

function, we need to find the optimum allocation of the jobs to the machines (al-

location problem), and the optimum processing order of the jobs on each machine

(sequencing problem) such that the corresponding objective function is minimized

or maximized. The optimality criteria on machine scheduling can be based on

completion times, due dates, inventory cost and utilization (Eiselt and Sandblom,

2004; Kan, 1976). These types of machine scheduling problems can be classified

into different categories based on three fields: machine environment, job char-

acteristics, and performance measure. In the following, the description of these

categories in each field are introduced.

1.1.1. Machine environment

Different configuration of machines can be encountered in a scheduling problem.

In literature, machine environment is categorized as the single machine, parallel

machines, and dedicated machine problems (Multi-stage problems). Each of these

environments may include different sub-categories.

Single Machine Problems

In single machine scheduling (SMS), a group of jobs are assigned to a single ma-

chine. Since the 1950’s, with the initial works of Jackson (1955) and Smith (1956),

single machine problems have been given considerable attention (Brucker, 2007).

The innate characteristic of these types of problems in addition to their ability

in providing a basis for more general and complicated problems has given rise to

much research in this area. Sometimes, in multi-processor environments, single

machines can be used in bottlenecks, or as task organizers for expensive proces-

sors. Also, an entire production line may be considered as a single machine or

2

Chapter 1. Introduction

more complicated scheduling problems may be divided into sub problems, which

are solvable with single machine solution procedures. Therefore, single machine

scheduling has a fundamental role in providing vision for further developments in

more general scheduling problems (B lażewicz et al., 2007).

Parallel Machines Problems

In parallel machine scheduling (PMS), we have a number of jobs that need to be

processed on a number of parallel machines so as to optimize objective functions

of minimization of the total cost, the total completion time, and the maximum

lateness (van den Akker et al., 1999). Parallel machine scheduling is among

the most widely-studied subjects in scheduling due to its application in both

theory and practice (B lażewicz et al., 2007). Regarding the theoretical aspect,

parallel machine scheduling is a more general form of single machine problem

and also a special case of flexible flow shop scheduling. Concerning the practical

aspect, this type of problem received considerable attention because it is typical

to have a parallel machines system in a real-world situation, and also the solution

techniques for this type of problem can be used in decomposition procedures for

multi-stage systems (Pinedo, 2012).

In general, this kind of scheduling problem can be divided into three main

categories including identical, uniform and unrelated parallel machines. In the

identical category, all machines work with the same speed and the processing

time for each job is the same on every machine. In the uniform category, every

machine has a different speed factor and each job contains only one activity. In

the unrelated parallel machine scheduling category, there is no specific relation

between the processing times of jobs on different machines (Chaudhry et al.,

2010).

3

Chapter 1. Introduction

Open Shop Problems

In an open shop scheduling problem (OSSP), jobs are comprised of a number

of operations. Each operation has a specific processing time and needs only one

machine for processing. However, no restrictions are specified for the sequence

of operations of a job on the various machines, i.e., the sequence in which the

operations of a job must be processed can be chosen arbitrarily. At any time,

each machine cannot carry out more than one operation, neither can each job

be processed by more than one machine. The goal of this type of problem is to

find a schedule of operations on machines, i.e., to find the starting time of the

operations, which minimize the overall finishing time known as makespan. This

type of problem first was introduced by Gonzalez and Sahni (1976) to model

real-world situations, like testing facilities, where operations can be processed by

any order on machines (B lażewicz et al., 2007; Low and Yeh, 2009; Khuri and

Miryala, 1999).

Flow Shop Problems

Since Johnson (1954), many researchers have dedicated their effort to study flow

shop scheduling problems (FSSP). These type of systems have extensive practical

application in various industries where jobs should be processed continuously on

multiple machines in series (Grabowski and Pempera, 2007). Almost one out of

four manufacturing systems, assembly lines and service information facilities are

represented by flow shop systems (Qian et al., 2009).

In a classical flow shop problem, operation sequence of jobs are identical

indicating that all jobs should follow a specific order to visit workstations, where

each workstation includes only one machine. Each machine can carry out one and

only one part at a time, and also each part can be processed on one machine at

the same time. It is required for each job to visit each work station only one time.

Consequently, the number of operations for every job is equal to the number of

4

Chapter 1. Introduction

machines. However, jobs may have operations with no processing time; that is to

say, a job may skip over some of the machines (Reza Hejazi and Saghafian, 2005;

Pinedo, 2012; Emmons and Vairaktarakis, 2012). As illustrated in Figure 1.1, in

flow shop environment, there is an entrance work station that first operation of

each job is processed there, and also there is an exit work station which processes

the last operation of each job.

Although, a flow shop system may seem similar to an assembly line, the

two differ in three major ways. Unlike the assembly lines, which can only manu-

facture a standard product, a flow shop is capable of processing a variety of jobs.

Moreover, in flow shops, it is not essential for a job to visit every work-station

to be processed; whereas in an assembly line, a job must be processed on all the

machines. Also, while in a flow shop, machines can be loaded independent of

the previous machine, it is not possible for a workstation to work independently

in an assembly line. Due to the mentioned differences, flow shop systems may

be classified as conservative assembly lines (Heller, 1959; Gupta and Stafford Jr,

2006).

The counterpart of classical flow shops are hybrid flow shops (HFS). These

types of flow shops are production systems consisting of the series of work stations,

in each of which a job can be executed by multiple parallel machines. In this

type of production system, it is possible to have only one machine in some work

stations, however, it is necessary to have at least one workstation with more

than one machine in the shop. Hybrid flow shop problems can be considered

a general combination of a parallel machines system and a classic flow shop.

Hybrid flow shops are productions systems where the goal in parallel machine

scheduling is to find the best allocation of jobs to the machines so as to optimize

the given objective function. Whereas, in classic flow shop scheduling, the aim is

to determine the optimum sequence of the jobs throughout the shop. Therefore,

in a hybrid flow shop, the objective is to determine the allocation of machines to

5

Chapter 1. Introduction

Work station 1
(Initial station)

Work station 2

Work station 3
Work station 4

(Terminal station)

Output for each part

Input for each part

Figure 1.1: An example of work flow in a classic flow shop

the jobs, and also the processing order of the jobs in each work station according

to one or more optimality criteria (Linn and Zhang, 1999; Ribas et al., 2010).

Job Shop Problems

In flow shop scheduling, all the jobs are restricted to be processed in a specific

order, i.e, the flow of jobs are unidirectional. However, in job shop scheduling, the

technological sequence of machines for each job is different; that is to say, unlike

the flow shops, there is no entrance workstation that processes the first operation

of each job and neither is there a terminal workstation that processes the final

operation of each job (Baker and Trietsch, 2009) as depicted in Figure 1.2. A

classic job-shop scheduling problem (JSP) consists of scheduling a set of jobs

which must be processed on a set of machines, where each job is composed of a

sequence of consecutive operations. Each machine is able to process one operation

at a time without interruption, and the processing sequence of operations of each

job is prescribed (Adams et al., 1988).

The more general type of JSP is called flexible job-shop scheduling (FJSP).

Brucker and Schlie (1990) were recognized by the majority of authors who first

introduced FJSP. Unlike JSP, in FJSP, operations are allowed to be processed on

6

Chapter 1. Introduction

Work station 1 Work station 2

Work station 3 Work station 4

Output for part type BOutput for part A

Input for part type A Input for part type C

Output for part
type C

Input for part
type B

Figure 1.2: An example of work flow in a classic job shop

more than one machine from a given set of available machines. This extension

makes FJSP a more complex problem than classical JSP due to the fact that in

addition to the operations assignment, routing of jobs should also be determined.

1.1.2. Job and resource characteristics

In machine scheduling problems, several attributes and restrictions can be con-

sidered for tasks and resources. In the following, possible constraints which can

be placed on jobs and machines are described.

Job release date (ready time)

This is the time at which a job becomes available for processing. If a release date

is specified for a task, then that job can not be started before the specified date.

Preemption

In preemptive scheduling, processing of a job or an operation on a machine may

repeatedly be interrupted by a scheduler in order to allocate the machine to a

different task with the higher priority. The interrupted job (preemptive job) will

be resumed at a later time on the same machine or another machine.

7

Chapter 1. Introduction

Precedence relation

This determines the precedence constraints, if any, between the jobs. Job j may

not be allowed to start being processed before the completion of one or more

particular jobs. In this case, those particular jobs have precedence over job j.

There are several forms of job dependencies in scheduling. If, in a system, at

most one job has an immediate precedence over job j, and job j has an immediate

precedence over at most one another job, the job relations is referred to as chains.

If at most one job has an immediate precedence over job j, but job j has an

immediate precedence over more than one job, the precedence constraint is called

intree. If job j has an immediate precedence at most over one job, but more than

one job has an immediate precedence over job j, the job relations is referred to

as outtree. If jobs have no precedence on a production system, they are referred

to as independent tasks (Pinedo, 2012).

Sequence-dependent setup

In many real life situations such as pressing in plastic manufacturing, die changing

in metalworking industries and role slitting in converter industries, setup time

for a job is dependent on its sequence. A sequence-dependent setup time implies

that setup time for an operation on a machine is the function of the immediate

preceding operation on the same machine. The dependency of setup time to the

preceding job arises when there are setup operations such as cleaning-up and

changing the tools which are necessary to be done to make the machine ready for

processing the next job (Kim and Bobrowski, 1994; Naderi et al., 2009). Thus, in

this type of manufacturing shop, setup for a job is formed by a setup that depends

on the preceding operation on the machine (sequence-dependent setup) and a

setup which depends on the previous operation of the job (sequence-independent

setup) (Rossi and Dini, 2007).

8

Chapter 1. Introduction

Routing flexibility

In the presence of routing flexibility in a manufacturing system, for a given process

plan, alternative routes may exist for certain jobs. Routing flexibility will provide

more options to assign operations to machines, and also it enables a scheduler

to cope with costly stops in production lines resulting from busy or inactive

machines. As stated before, by considering routing flexibility, classical job shop

scheduling is extended to flexible job shop scheduling where alternative machines

are available for processing an operation (Stecke and Raman, 1995; Rossi and

Dini, 2007).

Machine release date

This is the time at which a machine is released from preceding schedule and ready

to to begin processing of the current schedule. In many real-life situations, the

presence of ongoing processes from previous schedule is a very common occur-

rence. Machine release date can significantly affect the production schedule, when

alternative schedule plans (Routing flexibility) is also considered in a problem.

Since, selection of a machine with earlier release date may be more desirable for

a scheduler rather than a machine with later release date.

Lag time

Sometimes, in typical production systems, it may be required to have a waiting

time between successive operations of the same job since a job may need time to

get prepared for further operations after completion of earlier operations. This

situation may occur when, for instance, products need to be dried or cooled before

going to the next workstation. This waiting time is referred to as Lag time in

literature (Ruiz et al., 2008).

9

Chapter 1. Introduction

Machine availability

In many manufacturing systems, a certain machine may not be available con-

tinuously at all times, and all the machines in a shop may not be able to work

simultaneously. This phenomena frequently occurs in various industries due to

machine breakdowns (stochastic), preventive maintenance and shift changes (de-

terministic) (Lee, 1996).

Batch-processing machines

A Batch-processing machine is the one which is capable of processing several jobs

simultaneously. Heat treatment furnaces in metalworking, oxidation tubes in

wafer fabrication process, tanks or kilns in chemical processes and burn-in ovens

in semiconductor testing are examples of batch- processing machines (Lee, 1999;

Melouk et al., 2004).

Blocking

Scheduling problems with blocking constraints are usually found in flow shop

environments. Blocking phenomena implies that, intermediate queues of parts

waiting for their next operation are not permitted in the production system due to

having zero buffer, or limited buffer between the workstations. It means that, the

upstream machine should hold a completed job until the next machine becomes

available for processing, which prevents the upstream machine from processing the

next job (Pinedo, 2012). Just-in-time production systems are one of the reasons

for the occurrence of blocking environments, where efforts are to limit the work-in-

process inventory (Hall and Sriskandarajah, 1996). Also, in some manufacturing

systems, like concrete blocks manufacturing and chemical industries, because of

production technology or characteristics of the material, the intermediate buffers

(storage) are not permitted, which results in occurrence of blocking environments

(Ronconi, 2004).

10

Chapter 1. Introduction

No-wait

Scheduling problems with no-wait constraint regularly arise in flow shops. No-

wait production environments are the more restricted version of systems with

blocking constraint. In a no-wait environment, a job is required to be processed

through the shop without any interruption (waiting time) between two consecu-

tive workstations or on the machines. Thus, the production cycle time for a job

must be exactly equal to the sum of processing times of all operations. With

no-wait restriction, a scheduler may be required to delay the starting time of a

job in order to guarantee that the job will not wait for any machine through the

production line. Scheduling systems with no-wait constraint arise when due to

the characteristic of materials (e.g., temperature and viscosity), a job is required

to move to the next workstation immediately after completion of processing.

Examples of such a system can be found in steel production, plastic molding,

silverware production, anodizing of aluminum products, chemical and pharma-

ceutical industries, and canning operation in food processing industries (Pinedo,

2012; Hall and Sriskandarajah, 1996).

Recirculation

Recirculation implies that a job may need to visit certain workstations more

than one time. This phenomena may occur in both flow shop and job shop

environments.

1.1.3. Optimality criteria in scheduling problems

Generally, the goal in any scheduling environment is to find a feasible schedule

which minimizes the costs that are attributed to the scheduling decisions. The

objective functions in scheduling problems can be categorized into bottleneck

objectives and sum objectives. In the bottleneck objectives, the maximum of the

11

Chapter 1. Introduction

costs associated with the finishing time of the total jobs should be minimized.

However, in sum objectives, the sum of the costs should be minimized. Optimality

criteria, can also be categorized into those based on the completion time, and

those based on the due dates (Kan, 1976; Brucker, 2007). In the following, the

most common objective functions in scheduling are described.

Minimizing makespan

Makespan or maximum completion time, is the amount of time needed to finish

all the jobs. This value is obtained by subtracting the completion time of the

last job from the start time of the first job. This objective is usually considered

whenever the emphasis is on increasing the machines utilization and production

flow.

Minimizing total weighted completion time / weighted flow time

In some situations, jobs have different priority levels, which is usually represented

by assigning weights to the jobs. Total weighted completion time and weighted

flow time are two typical metrics in such cases. The flow time of a job is the inter-

val time (turn around time) between its arrival to the system and its completion

time. Thus, if a job has a release date (ready time), the value of its completion

time will be greater than the value of its flow time (Chekuri et al., 2001).

Minimizing maximum lateness (tardiness)

Lateness of a job is defined as the amount of time the job actual completion time

exceeds its original due date. Maximum lateness measures the worst due date

violation. Lateness gets a negative value if a job is completed earlier than its

due date. Usually, in real-life situations positive lateness values are associated

with penalties, whereas there is no advantage in completing a job earlier than its

due date. Therefore, most of the time, only the positive value of lateness (also

12

Chapter 1. Introduction

known as tardiness) is applied in problems. This objective is considered whenever

the goal is to increase customer satisfaction and to meet the demand (Baker and

Trietsch, 2009).

Weighted number of tardy jobs

As it mentioned earlier, due to the customer requirements, some jobs may be

given higher priority than the others. Also, it is necessary for every job to meet

its internal or external due dates. Tardy job refers to the jobs that violate their

due dates. The weighted number of tardy jobs is one of the popular metrics in

practical situations, since it is can be easily measured (Ghasemi, 2008; Pinedo,

2012).

1.2. Lot streaming

There exist several techniques in planning and scheduling which are used by indus-

tries to achieve reduction in manufacturing lead time and work-in-process (WIP)

inventory levels. The implementation of some of theses strategies like just-in-time

(JIT) and group technology (GT) requires a dramatic change in the way business

is organized, which can be extremely costly and time consuming. However, a

less expensive and more convenient solution for improving the efficiency is batch

production.

In a traditional batch production, similar jobs are batched together. In

other words, jobs are made in groups. The main reason for that is to decrease

the total amount of time to set up the machines and transport the jobs. In this

type of system, a finished part in a batch can move to the next station only if

all parts in that batch are completed their processing. Consequently, a part may

spend a large amount of time in a buffer waiting for the other parts in a same

batch to be processed, whereas the next machine may be available to process that

13

Chapter 1. Introduction

job. This waiting time can be extremely long when larger production batches are

considered. One promising solution to overcome this problem is the application

of lot streaming (LS) or lot sizing procedures (Potts and Van Wassenhove, 1992;

Zipkin, 1986).

The lot streaming concept, which was first introduced by Reiter (1966) is a

manufacturing technique in which production lots (consisting of several identical

jobs) are split into sublots (transfer batch) in order to benefit from simultaneous

processing of different sublots at a lot at different workstations (Potts and Baker,

1989). In today’s era of time-based competition (TBC), this concept has been

implemented by many top-notch companies in order to reduce their manufactur-

ing lead time (MLT) and to improve their customer service (Blackburn, 1991;

Bockerstette and Shell, 1993; Chang and Chiu, 2005).

Lot streaming refers to the decision of determining the number of sublots

in a production lot, the magnitude of each sublot and their processing sequence

so as to optimize the scheduler objective. Unlike the batch production in which

size of production lots are fixed, in a system where lot streaming is allowed, a

finished sublot can be transported to the next work station and start processing

while other jobs from the same lot but of a different sublot are still waiting

to be processed on the earlier workstation (Potts and Van Wassenhove, 1992).

In other words, lot streaming makes it possible to process an operation and its

preceding operation of a same job simultaneously. As a result of this overlapping

of production, the amount of time a part spends in the system (cycle time) is

remarkably reduced. Thus, the makespan and work in process can be minimized.

However, by increasing lot splitting, the total handling and setup times (cost)

may increase due to the increment in the number of sublots, whereas the total

inventory cost decreases (Low et al., 2004b).

In fact, if no setup and/or transfer times are considered for the jobs in a

problem, the optimum solution may be to have only one job in each sublot (Chan

14

Chapter 1. Introduction

et al., 2009). Evidently, in practical situations where machine setups are present,

a tradeoff exists between the amount of time saved by splitting lots to the sublots

and the additional time required because of extra setups. Nevertheless, despite

the negative influence of additional setup times on makespan, lot streaming is still

significantly efficient (Dauzère-Pérès and Lasserre, 1997; Buscher and Shen, 2011).

The potential benefits of lot streaming in flow-shop and job-shop environments

are addressed in Kalir and Sarin (2000) and Low et al. (2004b), respectively.

W4

W1

W2

W3

Machine

Time

J2 J2J1 J1 J3 J3

J1 J1 J2 J2 J3 J3

J1 J1 J2 J2 J3 J3

J1 J1 J2 J2 J3 J3

J1 J2 J3

J1

J1

J1 J2 J3

J2 J3

J2 J3

W4

W1

W2

W3

Machine

Time
(a)

(b)

The amount of

Improvement in

the makespan

W1 W2 W3 W4J1:

W1 W2 W3 W4J2

W1 W2 W3 W4J3

Job sequences

Figure 1.3: An example of lot streaming in a classic flow shop

Figures 1.3 and 1.4 illustrate the impact of lot streaming in a classical flow

shop and a classical job shop, respectively. In these examples, it is assumed

that the processing sequence of sublots can be different than the original lot. As

can be seen in these figures, by application of lot streaming the makespan has

been improved in both environments. In flow shop environments, it is extremely

beneficial to divide lots to sublots, since lots are processed in the same order and

have the same characteristics. However, application of lot streaming cannot be

15

Chapter 1. Introduction

W4

W1

W2

W3

Machine

Time

J2 J2

J1 J1 J3 J3

J1 J1 J2J2 J3 J3

J1 J1J2 J2J3 J3

J1 J1

J2 J2

J3 J3

J1 J2

J3

J1

J1

J1

J2 J3

J2

J3

J2

J3

W4

W1

W2

W3

Machine

Time
(a)

(b)

The amount of

Improvement in

the makespan

W1 W2 W4 W3J1:

W4 W2 W3 W1J2

W3 W1 W2 W4J3

Operation sequences

Figure 1.4: An example of lot streaming in a classic job shop

guaranteed to be fruitful, due to the fact that there are more inherent constraints

in a job shop problem than in a flow shop problem (Low et al., 2004b; Chan et al.,

2009).

1.3. Lot streaming terminology

In this section different attributes for a scheduling problem with lot streaming

are presented which are adopted from Feldmann and Biskup (2008).

• Single product/multiple products : A lot streaming problem may deal with

either a single product or multiple products.

• Fixed/Equal/consistent/variable sublots : Sublots are termed fixed, when

the number of jobs in each sublot in the system is identical on all worksta-

tions. Equal sublots means that every sublot of a product consists of the

16

Chapter 1. Introduction

same number of jobs. A consistent sublot refers to the case that sublot sizes

can not alter over time. The sublot is called variable if the size of a sublot

is not restricted to be consistent.

• Discrete/continuous sublots : A discrete sublot must consist of integer num-

ber of parts (e.g., Automotive industries), whereas the number of jobs in

a continuous sublot can be decimal and not just integer (e.g., chemical

industries).

• Non-idling/intermittent idling : In a non-idling system, sublots must be

processed immediately after the pervious sublot on the machine completes

its processing. However, in a system where intermittent idling is allowed

machines can have idle times between the sublots.

• Attached setups/detached setups : When it is possible to perform machine

setup for a job prior to its arrival, the machine setup is called detached

(anticipatory) setup . However, the setup for a job is called attached (non-

anticipatory) setup time, provided that the presence of that job is necessary

during the setup procedure.

• Intermingling/non-intermingling sublots : Intermingling sublots can only

exist in multi-product settings. Assuming that Intermingling sublots are

allowed, the sequence of sublots of a particular lot in a workstation can be

interrupted by sublots from different lots. However, for non-intermingling

sublots, it is not permitted to interrupt the sequence of sublots of a lot in

a workstation. In other words, the sequence of sublots of a product can

not start processing in a workstation unless the sublots of the preceding

product on that workstation complete their processing (Ghasemi, 2008).

17

Chapter 1. Introduction

1.4. A classification scheme

It is clearly obvious that by combining the aforementioned parameters, attributes

and objectives, a large variety of scheduling problems are created. A useful and

convenient way to characterize this huge number of scheduling problems is to

adopt a comprehensive representation scheme. In this section, a novel compre-

hensive classification scheme is presented to cover a wide range of scheduling

models. This classification is an extension and combination of the existing classi-

fications in Graham et al. (1977), Aarts and Lenstra (1997), Eiselt and Sandblom

(2004), Chang* and Chiu (2005), Pinedo (2012), and Cheng et al. (2013).

In table 1.1, a typical scheduling problem is described by a four-field repre-

sentation α|β|β′|γ. The α field represents the machine environment, and it can

only contain two or less items. The β field provides information about the job

and resource characteristics and also the restrictions and constraints existing in

the model. β field can contain no item, single item or multiple items. If lot

streaming is permitted in a system, sublot-related features appear in β′ field. At

the end, γ field gives information about the model optimality criteria. Unlike the

previous fields, γ field can only contain one item.

Table 1.1: Four field classification scheme

Comprehensive classification of scheduling problems

Main field Subfield Level

α Production type(α1) Single machine (φ)1

Identical parallel machines (Pm)

Uniform parallel machines (Qm)

Unrelated parallel machines (Rm)

Open shop system (Om)

Flow shop system (Fm)

continued . . .
1If the symbol φ is assumed for any parameters in this table, it will appear as an empty spot

in the representation scheme

18

Chapter 1. Introduction

. . . continued

Comprehensive classification of scheduling problems

Main field Subfield Level

Flexible flow shop system (Ffc)

Job shop system (Jm)

Flexible job shop system (FJm)

Number of parts(α2) Single product is available(L1)

Multiple products are available(Ln)

β Job release date (β1) No release date is specified for the jobs(φ)

Release date is specified for the jobs(rj)

Preemption(β2) Preemption is allowed(prmp)

Preemption is not allowed (φ)

Precedence relation(β3) There is no precedence relation between the jobs

(φ)

Precedence relation is in form of an arbitrary

acyclic graph (prec)

Precedence relation is in form of a tree (tree)

Precedence relation is in form of a chain (chain)

Job setup type(β4) No setup time is specified (φ)

Sequence independent setup times is specified for

the jobs (Sk)

Setup time for a job is only dependent on the

preceding job (Sjk)

Setup time for a job is dependent on the machine

in addition to the preceding job (Smjk)

Setup time for a job is dependent on its operation

in addition to the machine and the preceding job

(Somjk)

Routing flexibility (β5) No alternative route exists for the jobs. (φ)

Alternative routes exist for the jobs. (routf)

continued . . .

19

Chapter 1. Introduction

. . . continued

Comprehensive classification of scheduling problems

Main field Subfield Level

Machine release date (β6) All the machines are ready at the beginning of the

scheduling. (φ)

Release dates are specified for the machines (rm)

Lag time (β7) Waiting time between successive operations of any

job is not required. (φ)

Waiting time between successive operations of

particular jobs is necessary. (lag)

Machine availability (β8) All the machines are working non-stop all the time

(no breakdown) (φ)

Particular machines are not available continu-

ously all the time. (brkdwn)

Batch-processing (β9) Machines capable of doing batch processing are

not available. (φ)

There exist machines with ability to do batch pro-

cessing. (btchm)

Blocking (β10) There is unlimited buffer between the worksta-

tions (φ)

The intermediate buffers (storage) are extremely

limited or not permitted (block)

No-wait (β11) Waiting time (queues) between two consecutive

workstations is permitted. (φ)

A particular job must never stop between two con-

secutive workstations. (nwt)

Batch production (β11) Jobs are scheduled individually. (φ)

Jobs are made in bulk, however, lot sizing is not

permitted (btchj)

continued . . .

20

Chapter 1. Introduction

. . . continued

Comprehensive classification of scheduling problems

Main field Subfield Level

Jobs are made in bulk, and lot sizing is allowed

(btchls)

β′ 2 Sublot type (β′1) Sublot sizes are fixed. (Tf)

Sublot sizes are equal. (Tq)

Sublot sizes are consistent. (Tc)

Sublot sizes are variable. (Tv)

Number of sublots (β′2) Number of sublots in each lot is predetermined

(FixN)

Number of sublots in each lot is not given (FlexN)

Divisibility of sublot size

(β′3)

Sublots are discrete. (Dd)

Sublots are continuous. (Dc)

Operation continuity (β′4) Machines can have idle time. (φ)

Machines are not allowed to have idle time. (Ni)

Setup predictability (β′5) Setup time for certain machines are anticipatory

(Pa)

All machine setups are not anticipatory (Pn)

sequence continuity (β′6) sublots from different lots can be intermingled.

(Si)

sublots from different lots are not allowed to be

intermingled (Sn)

γ Performance

measurement(γ1)

Makespan (Cmax)

Total weighted flow time (
∑
wjCj)

Maximum lateness (Lmax)

Total weighted tardiness (
∑
wjTj)

Weighted number of tardy tasks (
∑
wjUj)

2It is obvious that if β11 6= btchls, no symbol appears in this field.

21

Chapter 1. Introduction

1.5. Research in this thesis

This study provides a novel hybrid genetic algorithm based on the method pro-

vided in Defersha and Chen (2012) for scheduling and lot streaming of multi

products in flexible job shop environment. The comprehensive problem studied

in this thesis takes into account routing flexibility, sequence-dependent setups,

machine release dates and lag time. In addition, the sublots of products can

have attached or detached setup times, and also are allowed to be intermingled.

According to the above classification scheme, the problem considered in this re-

search denotes by : FJm, Ln | Somjk, routf , rm, lag, btchls | Tv, FixN , Dc,

xPn,Si | Cmax.

1.6. Organization of the thesis

The remainder of this study proceeds as follows. In Chapter 2, a review of liter-

ature on hybridization of metaheuristics, and especially evolutionary algorithms

is presented. In addition, Chapter 2 reviews earlier studies on methods for lot

streaming problems. In Chapter 3, a mixed integer-linear programming (MILP)

model for flexible job shop problem with lot streaming (FJSP-LS) is represented

based on Defersha and Chen (2012). In Chapter 4, a detailed solution procedure

for both pure GA and the proposed hybrid GA is depicted. Numerical examples

are introduced in Chapter 5. And finally, discussion and conclusions are presented

in Chapter 6.

22

Chapter 2

Literature Review

2.1. Introduction

Over the last years, many efforts have been made by researchers to explore the

field of metaheuristics. This is due to the fact that metaheuristics have proven

themselves to be effective alternatives to classical heuristics and optimization

methods for complex optimization problems. The term metaheuristic which was

first devised by Glover (1986), originates in computer science (CS), artificial in-

telligence (AI), and operations research (OR) communities. Metaheuristics are

a class of approximate methods which are designed to obtain a near-optimal so-

lution at relatively low computational cost. In addition, like other approximate

methods - in metaheuristics - in order to reduce the computational time substan-

tially, the guarantee for obtaining an optimal solution should be sacrificed (Osman

and Laporte, 1996; Gendreau and Potvin, 2005; Blum et al., 2008; Bianchi et al.,

2009). The salient examples of metaheuristics include Simulated Annealing (SA),

Tabu Search (TS), Evolutionary Algorithms (EA), and Ant Colony Optimization

(ACO). For further details on metaheuristics, refer to Ribeiro and Hansen (2002);

Kochenberger et al. (2003); and Rayward-Smith et al. (1996).

23

Chapter 2. Literature Review

2.2. Hybrid metaheuristics

In recent years, it has become apparent that pure application of classical meta-

heuristics is limiting. Therefore, many approaches have emerged using a combi-

nation of algorithmic concepts of various methods both from inside and outside

of the metaheuristic field with a view to attaining higher efficiency. Generally,

this type of approach is called hybrid-metaheuristics. The main purpose of hy-

bridization is to benefit from unified advantages of the individual pure strategies

and produce new algorithms in order to achieve an effective performance and

a profitable synergy in solving hard optimization problems (Raidl, 2006; Blum

et al., 2011; Yi et al., 2012).

Several classifications and categorizations on hybrid metaheuristics have

been developed in recent years. Talbi (2002) provided a classification based on the

design issues in hybridization. According to this paper, in the first level, hybrid

metaheuristics were characterized in low-level versus high-level hybridizations.

In low-level hybridization, a functional composition of an optimization algorithm

is exchanged with other metaheuristics. Unlike low-level hybridization, in high-

level hybridization, not only is there no internal relation between optimization

algorithms which are to be combined together, but also all algorithms preserve

their identities.

In the second level of this hierarchical classification, a combination of opti-

mization algorithms is classified into teamwork versus rely hybridizations. Similar

to the way a pipeline works, rely hybridizations are those in which the output of

an optimization algorithm is used as an input for the other algorithm. On the

contrary, in teamwork hybridizations, optimization algorithms cooperate with

each other so that each algorithm performs a search in the solution space. With

respect to this classification, our proposed method in this thesis lies in Low-level

rely hybrid (LRH) category (Talbi, 2002).

Moreover, in Raidl (2006), hybridization methods are further distinguished

24

Chapter 2. Literature Review

based on the types of algorithms which may be combined, level of hybridiza-

tion, order of execution, and control strategy. According to this categorization,

metaheuristics may be hybridized with other metaheuristics, problem-specific al-

gorithms, simulations, exact techniques, heuristics, and soft computing methods.

Furthermore, control strategies in hybrid metaheuristics are also divided into

integrative and collaborative categories. In the integrative approach, an opti-

mization approach is embedded in a primary approach to work as a subordinate

algorithm. However, in the collaborative approach, the relation between the opti-

mization algorithms is limited to exchanging the information and the algorithms

work separately (Raidl, 2006).

With regard to above classification, the proposed method in this thesis can

be deemed an integrated approach, in which a metaheuristic method is combined

with an exact method. Exact method encompasses branch and bound (BB),

dynamic programming, and linear and integer programming. For broader dis-

cussions on the categories of hybrid metaheuristics, refer to Blum et al. (2011).

Likewise, further information regarding the parallel hybrid metaheuristic classi-

fication can be found at Cotta et al. (2005).

Moreover, in Puchinger and Raidl (2005), hybrid metaheuristics - which

employ exact methods as a complement, are categorized as the following classes:

The exact methods are incorporated with metaheuristics :

• To solve the relaxed problem in order to provide an auspicious initial solu-

tion or to provide a guide for local search or constructive algorithms;

• To explore large neighborhood in local search-based metaheuristics;

• To merge their solutions with metaheuristics in different stages-similar to

using an exact method as a crossover operator in Genetic Algorithm; and

• To complete the missing part of a solution representation in evolutionary

algorithms, while a complete representation of the solution via evolutionary

25

Chapter 2. Literature Review

algorithms is not possible.

With regard to this classification, our proposed method follows the ”merging

solutions” category. A comprehensive classification of the hybridization of meta-

heuristics with exact methods can be found in Jourdan et al. (2009).

2.2.1. Hybridization of evolutionary algorithms

Recently, hybridization of evolutionary algorithms have received noteworthy in-

terest owing to their outstanding performance in solving several hard optimization

problems (Grosan and Abraham, 2007). Evolutionary algorithms are a class of

stochastic algorithms garnered from models of organic evolution. The prominent

examples of these computational algorithms include Genetic Algorithms (GAs),

Evaluation Strategies (ESs), Genetic Programming, and Evaluation Program-

ming (EP) (Bäck, 1996; Lozano and Garćıa-Mart́ınez, 2010). There exist several

possibilities for a combination of evolutionary algorithms with other optimiza-

tion techniques. Some techniques/algorithms like local search may be used in

the initialization stage or among the offspring created by mutation or recombi-

nation. Also, optimization techniques may be drawn upon as an operator in the

hybridization of evolutionary algorithms (Grosan and Abraham, 2007).

In Moscato (1989), hybridization between evolutionary algorithms and lo-

cal search algorithms is termed memetic algorithms. Moreover, a combination

of evolutionary algorithms with constructive heuristics and exact method is sim-

ilarly categorized in memetic algorithms. In addition to the term - memetic

algorithm, several names have been assigned in literature to evolutionary algo-

rithms incorporated with local search approaches; these names include hybrid

genetic algorithms, genetic local searches, and Lamarckian genetic algorithms.

For more details about memetic algorithms, an interested reader is referred to

Moscato et al. (2004); Hart et al. (2005); and Krasnogor and Smith (2005).

26

Chapter 2. Literature Review

2.2.2. Hybrid genetic algorithm

In this thesis, a novel hybrid genetic algorithm is introduced. The genetic algo-

rithm (GA) is an evolutionary algorithm proposed by (Holland, 1975) based on

ideas from Darwin’s theory of evolution (Goldberg, 1989). Similar to any meta-

heuristics, in order to have an efficient performance in the GA, the explorative

and exploitative capabilities of the GA should be well balanced. The explorative

ability (diversification) refers to the ability of the GA to conduct global search

in the solution space in order to find the most promising regions, whereas the

exploitative ability (intensification) refers to the ability of the GA to conduct

local search in promising regions of the solution space in order to find best solu-

tions (El-Mihoub et al., 2006; Drezner and MisevičIus, 2012). However, while a

typical genetic algorithm is designed to swiftly find the most promising regions

of the solution space, the GA’s ability to exploit best solutions in convergence

regions is comparatively weak. In other words, by performing a pure GA on a

problem, a moderately good solution can be rapidly obtained. Nevertheless, it

takes a considerably long time to improve that good solution. Therefore, the

slow convergence rate of a pure GA renders it computationally expansive to solve

hard optimization problems (Yen et al., 1995; Partheepan, 2004; El-Mihoub et al.,

2006).

One effective way to minimize this problem is to hybridize the pure GA

by means of incorporating the other optimization algorithms within a GA. Re-

searchers in the hybrid genetic algorithms (HGA) field have been very active

in recent decades. Indeed, there exists abundant research in literature on vari-

ous categorizations and classifications for the hybridization of genetic algorithms.

The interested reader is referred to relevant reviews (Talbi, 2002); (El-Mihoub

et al., 2006); (Bianchi et al., 2009); and (Drezner and MisevičIus, 2012).

27

Chapter 2. Literature Review

2.3. Machine scheduling problems

Generally, several approaches have been devised to solve JSP. Exact methods,

branch and bound, heuristic algorithms, and shifting bottle neck are among the

methods which have been used for JSP with dimensions less than 15 parts by 15

machines. However, since JSP and particularly FJSP are in the class of NP-hard

problems, exact methods are incapable of tackling the problems with greater

dimensions in a reasonable amount of time. Therefore, various heuristics such

as dispatching rules and local search as well as meta-heuristics approaches such

as TS, SA, and GA have been utilized to solve these problems with a practical

computational cost (Gonçalves et al., 2005; Bagheri et al., 2010).

Furthermore, these solution procedures for solving JSP and FJSP can be

categorized into hierarchical and integrated approaches. In hierarchical approaches,

the solution procedure is based on the decomposition of the original problem with

the intention of reducing the problem complexity. On the other hand, integrated

approaches are harder to solve and more optimal in terms of eventual outcome.

In this type of approach, sequencing and assignment sub problems are treated

simultaneously (Pezzella et al., 2008). Among these approaches, the GA has been

broadly applied to FJS problem in recent years.

2.3.1. Flow shop scheduling with lot streaming

In literature, numerous research on lot streaming can be found; however, most

of these investigations are devoted to lot streaming in flow shop manufacturing

systems. In contrast, research on job shop lot streaming is relatively limited (Low

et al., 2004a). In the majority of these investigations into lot streaming in flow

shop, metaheuristics have been used as a main tool to solve the problem. (See

for example (Tseng and Liao, 2008; Pan et al., 2010, 2011b; Marimuthu et al.,

2013)). In this subsection, we restrict our attention to the application of GA and

28

Chapter 2. Literature Review

hybrid GA in the lot streaming flow shop scheduling problems.

Flow shop scheduling under lot streaming environment can be categorized

into single-job and multi-job problems. In single-job problems, the primary objec-

tive is to determine the optimal sublot sizes (best allocation of sublots). However,

in problems with more than one job, the main goal is to simultaneously find the

optimal sublot sizes, and their best processing sequence (Pan et al., 2011a).

In Kumar et al. (2000), different heuristic methods for solving a no-wait flow

shop scheduling problem with lot streaming is presented and evaluated. Their

lot streaming problem involves three interdependent decision variables including,

the number of sublots for each lot, the size of the sublots, and finally processing

sequence of these sublots. They achieved promising results, when GA is em-

ployed to find the number of sublots and their processing sequence, and linear

programming (LP) is used to determind the sublot sizes. Yoon and Ventura

(2002) presented a hybrid GA for a lot streaming flow shop scheduling problem

in which the number of equal sized sublots is fixed for each lot. Their proposed

HGA incorporates LP and a Pairwise Interchange (PI) method, in order to pre-

vent the premature convergence of GA and to preserve explorative ability of the

GA.

In Martin (2009), a mixed-integer linear programming (MILP) assisted GA

is developed for a multi-family flow shop lot streaming scheduling problem. In

this study, MILP is adopted to find the optimum sublot sizes and GA is applied

to determine the number of sublots in each lot and their processing sequence. In

Ventura and Yoon (2012), a new genetic algorithm (NGA) is devised to solve a

lot streaming flow shop problem with blocking (limited buffer capacity), in which

sublot sizes are equal. In their new algorithm, selection and mating operators

of a classical GA has been replaced by new operators. In Marimuthu et al.

(2008), a genetic algorithm and a GA-based hybrid evolutionary algorithm (HEA)

are proposed to obtain the best processing sequence of the sublots. Kim and

29

Chapter 2. Literature Review

Jeong (2009) proposed an adaptive GA to solve a no-wait flexible lot streaming

problem in flow shop environment. Furthermore, Defersha and Chen (2010a)

developed a hybrid GA for a lot streaming flow shop problem with setup time

and variable sublots. In their method, GA is applied to obtain the optimum value

of integer variables (e.g, processing sequence of sublots), whereas LP is employed

to simultaneously find the value of the continuous variables corresponding to each

integer solution visited (e.g, size of each sublot). For a comprehensive review of

flow shop scheduling problems with lot streaming, an interested reader is referred

to Sarin and Jaiprakash (2007).

2.3.2. Job shop scheduling with lot streaming

As was mentioned earlier, a very limited number of researches in job shop schedul-

ing with lot streaming (JSP-LS) have been reported in literature. In Dauzere-

Peres and Lasserre (1997), an iterative approach for solving job shop scheduling

with lot streaming is developed. This approach solves the problem once with

given sublot sizes and once with given processing sequence of sublots in an iter-

ative way. Later, in Chan et al. (2004) a procedure using genetic algorithm for

solving equal-sized lot streaming job shop problem is introduced. Also, Chan et al.

(2008) proposed a method based on genetic algorithms and simple dispatching

rule to solve assembly job shop scheduling problems with lot streaming. Likewise,

Chan et al. (2009), developed an approach - named LSGAVS - based on the GA.

In this approach, lot sizing and job shop problems are solved simultaneously.

Buscher and Shen (2009) introduced an algorithm comprised of three phases

to minimize the makespan of a job shop problem with lot streaming. These three

phases encompass the predetermination of sublot sizes (generation of equal sublot

sizes), the determination of schedules (based on tabu search), and variation of

sublot sizes. Furthermore, Liu et al. (2013) investigated the expected benefit of lot

streaming in a special case of job shop problems where job values (i.e, profitability

30

Chapter 2. Literature Review

of a job being completed) exponentially deteriorating over time. They applied

and compared a fixed number job splitting method (FNJS) and a GA based on

job splitting approach (GAJS) to maximize the total value of the jobs. Their

proposed GA determines the number of sublots and their magnitudes. In Wong

and Ngan (2013), two hybrid evolutionary algorithms, namely, HGA and hybrid

particle swarm optimization (HPSO) are introduced and compared as solution

procedures for an assembly job shop problem with lot streaming. Moreover, in

Defersha and Chen (2009), and specifically in Defersha and Chen (2012), a more

comprehensive flexible job shop problem with lot streaming is solved using the

GA by considering (1) unequal lot sizes, (2) sequence-dependent set-up time,(3)

attached/detached set ups, (4) machine release dates, and (5) lag time. Their

proposed approach constitutes the basis of the work in this thesis. Furthermore,

an interested reader is referred to Cheng et al. (2013) for a comprehensive review

of lot streaming in scheduling problems.

2.4. Concluding Remarks

As was discussed earlier, slow convergence is one major weakness in a pure GA.

While the GA is able to find most promising regions in the solution space, other

optimization methods should be incorporated within the GA in order to find

near-optimal solutions or optimal solutions in promising regions with reasonable

time consumption. Hence, we used linear programming (LP) as assistance to

the GA and achieved a significant improvement in computational time. The

technique which is used to reduce looping in the proposed LP and the way LP

is incorporated with the GA in the whole solution procedure are two distinctive

features of this novel approach. In this approach, LP is used both in the initial

population and during the genetic search process in order to improve promising

solutions. The role of LP is to determine the optimal values of the continuous

31

Chapter 2. Literature Review

variables corresponding to the values of the integer variables of these promising

solutions.

32

Chapter 3

Mathematical Model

The main objective of this thesis is to present a linear programming assisted GA

to solve the flexible job shop problem with lot streaming presented in Defersha

and Chen (2012). As stated before, classical JSP is a strongly NP-hard problem

(Garey et al., 1976). FJSP is an extension of JSP in the sense that it requires

the additional decision of assigning of operations to the machines (routing sub-

problem), as well as the decision of sequencing of operations on the machines

(scheduling sub-problem). Hence, FJSP not only incorporates all the complexities

of it predecessor JPS but also it is a more complex problem. Thus, it can be easily

concluded that FJSP is also in the class of NP-hard problems (Xia and Wu, 2005).

Traditional optimization methods are incapable of tackling large-sized NP-

hard problems due to the high computational complexity. However, mathematical

programming formulation is the key step to develop an efficient heuristic for

these problems. In this chapter, for the sake of better comprehension of the

mathematical model presented in this thesis, previously developed mathematical

formulations in literature for JSP, FJSP and FJSP with sequence-dependent setup

time are reviewed. Finally, at the end of this chapter, the problem in this thesis

(FJSP-LS) is described, and the corresponding mathematical model is presented.

33

Chapter 3. Mathematical Model

3.1. Preliminary study

According to Demir and Kürşat İşleyen (2013), mathematical models for JSP

and FJSP can be distinguished based on the type of binary variable that they are

dependent on for determining the sequence of operations on the machines. These

binary variables are categorized into sequence-position variables, precedence vari-

ables and time-indexed variables. These three types of variables are developed by

Wagner (1959), Manne (1960) and Bowman (1959), respectively. In this section,

three broadly used MILP models in literature for FJSP are presented which are

adopted from Demir and Kürşat İşleyen (2013). The first MILP model is placed

in the category of sequence-based models, and the remaining two MILP models

are placed in the category of precedence-based models. Furthermore, at the end

of this section, a widely used MILP model in literature for FJSP with sequence

dependent setup time is provided.

3.1.1. Notations for introductory mathematical models

Here, problem description and notations for review of the mathematical models

in literature are provided. Consider a job shop consisting of M machines and a

total number of J independent jobs needing to be scheduled in the system. Each

job j is to undergo Oj number of operations in a fixed sequence such that each

operation o (where o = 1, . . . , Oj) can be processed by one of several eligible

machines. All the machines are available at time zero. Also, preemption is not

permitted, and no setup times are considered for the machines. In all models,

the objective is to minimize the makespan of the schedule. We next introduce

the notations used in the following introductory models.

Parameters:

Po,j,m A binary data equal to 1 if operation o of job j can be processed on

machine m, 0 otherwise;

34

Chapter 3. Mathematical Model

To,j,m Unit processing time for operation o of job j on machine m;

Mo,j A set of eligible machines of operation o of job j;

Em A set of operations, which can be performed on machine m; and

Ω Large positive number.

Variables:

Continuous Variables:

cmax Makespan of the schedule;

co,j,m Completion time of operation o of job j on machine m;

co,j Completion time of operation o of job j

qo,j,m Starting time of operation o of job j on machine m;

wo,j Starting time of operation o of job j;

to,j Processing time of operation o of job j, after select a machine; and

q̂r,m Starting time of production run r of machine m.

Binary Integer Variables:

xr,m,o,j A binary variable which takes the value 1 if the rth run on machine

m is for operation o of job j, 0 otherwise;

ym,o,j A binary variable which takes the value 1 if operation o of job j is

performed on machine m, 0 otherwise; and

vo,j,o′,j′,m A binary variable that takes the value 1 if the oth operation of job j

has precedence over o′th operation of job j′ on machine m, 0 otherwise.

3.1.2. Sequence-position variable based models for FJSP

These type of models which were first proposed by Wagner (1959) are based on

the concept that machine m has a fixed number of production runs (positions)

35

Chapter 3. Mathematical Model

Rm (where r = 1, . . . , Rm) and each of these production runs can be assigned at

most to one job; thus, the assignment of operations to production runs of a given

machine determines the sequence of the jobs on that machine. The following

model is originally adopted from Fattahi et al. (2007).

MILP Model A

Minimize:

Objective = cmax (3.1)

Subject to:

cmax ≥ wo,j + to,j ; ∀(o, j) (3.2)∑
m

To,j,m · ym,o,j = to,j ; ∀(o, j) (3.3)

wo,j + to,j ≤ wo+1,j ; ∀(o, j)|(o < Oj) (3.4)

q̂r,m + to,j · xr,m,o,j ≤ q̂r+1,m ; ∀(r, o, j,m)|(r < Rm) (3.5)

q̂r,m ≤ wo,j + (1− xr,m,o,j) · Ω ; ∀(r,m, o, j) (3.6)

q̂r,m + (1− xr,m,o,j) · Ω ≥ wo,j ; ∀(r,m, j, o) (3.7)

ym,o,j ≤ Po,j,m ; ∀(o, j,m) (3.8)∑
j

∑
o

xr,m,o,j = 1 ; ∀(r,m) (3.9)

∑
m

ym,o,j = 1 ; ∀(o, j) (3.10)

∑
r

xr,m,o,j = ym,o,j ; ∀(o, j,m) (3.11)

wo,j, to,j and q̂r,m are greater than equal zero (3.12)

xr,m,o,j and ym,o,j are binary (3.13)

36

Chapter 3. Mathematical Model

The constraint in Eq. (3.2), along with the objective function, determine

the makespan. The constraint given in Eq. (3.3) determines the processing time

of operation o of job j by the assigned machine. The constraint in Eq. (3.4) is

to enforce the requirement that each operation o + 1 of job j cannot be started

before the completion time of operation o of that job. The constraint in Eq. (3.5)

states that machine m can only process one operation at a time. The constraints

in Eqs. (3.6) and (3.7) together state that the start time of the oth operation of

job j is equal to the start time of the rth run of machine m if production run

r is assigned to operation o. The constraint given in Eq. (3.8) is for defining

the eligible machines for each operation. The constraint in Eq. (3.9) states that

each operation can be assigned to exactly one production run of a machine. The

constraint in Eq. (3.11) enforces the restrictive assumption that job j can be

processed exactly on one machine at a time. Finally, in the constraint given

in 3.12, the logical relation between the binary variable ym,o,j and xr,m,o,s,j is

depicted.

3.1.3. Precedence variable based models for FJSP

These type of FJSP models are based on precedence variable vo,j,o′,j′,m, which

was first introduced by Manne (1960). This variable is employed to indicate the

sequence of operations, which are assigned on the same machine. If vo,j,o′,j′,m

takes the value 1, then operation o of job j has precedence over operation o′ of

job j′ on machine m. However, it is not necessary for operation o′ of job j′ to

be performed immediately after the completion of operation o of job j. In this

section two precedence-variable based models which are broadly used in literature

are presented.

37

Chapter 3. Mathematical Model

MILP Model B

This kind of MILP model was first devised by Gao et al. (2006), and it mainly

relies on completion time of operations co,j and precedence variable vo,j,o′,j′,m .

Minimize:

Objective = cmax (3.14)

Subject to:

cmax ≥ co,j ; ∀(o, j) (3.15)

co,j − co−1,j ≥ To,j,m · ym,o,j ; ∀(o, j,m)|(o > 1) (3.16)

c1,j ≥ T1,j,m · ym,1,j ; ∀(j,m) (3.17)

(co′,j′ − co,j − To′,j′,m) · ym,o,j · ym,o′,j′ · vo,j,o′,j′,m ≥ 0 ;

∀(o, j, o′, j′,m)|(m ∈ (Mo,j ∩Mo′,j′))
(3.18)

(co,j − co′,j′ − To,j,m) · ym,o,j · ym,o′,j′ · vo′,j′,o,j,m ≥ 0 ;

∀(o, j, o′, j′,m)|(m ∈ (Mo,j ∩Mo′,j′))
(3.19)

∑
k∈Mo,j

ym,o,j = 1 ; ∀(o, j) (3.20)

vo,j,o′,j′,m+vo′,j′,o,j,m = ym,o,j ·ym,o′,j′ ; ∀(o, j, o′, j′,m)|(m ∈ (Mo,j∩Mo′,j′)) (3.21)

co,j is greater than equal zero (3.22)

ym,o,j is binary (3.23)

The constraint in Eq. (3.15), along with the objective function, determines

the makespan. The constraint in Eq. (3.16) makes sure that the processing

sequence of operations for each job corresponds to the prescribed order. The

constraint in Eq. (3.17) ensures that the completion time of the fist operation

of job j is always greater than its processing time. The constraints in Eqs.

38

Chapter 3. Mathematical Model

(3.18) and (3.19) together state that for any operation pair o and o′, two possible

constraints exist, namely, operation o should not be started before the completion

of operation o′ ,and vice versa. Since, either one or the other constraint must hold,

they are referred to as disjunctive constraints. The constraint given in Eq. (3.20)

is to enforce the restrictive assumption that each operation must be assigned only

to one machine. The constraint in Eq. (3.21) states that only one precedence

relation can be chosen for operation pair o and o′.

MILP Model C

This type of model was first proposed by Kim and Egbelu (1999) to formulate

FJSP. This model is mainly based on variable qo,j,m, the starting time of operation

o of job j on machine m, and the precedence variable vo,j,o′,j′,m.

Minimize:

Objective = cmax (3.24)

Subject to:

cmax ≥ wo,j +
∑
m

To,j,m · ym,o,j ; ∀(o, j) (3.25)

wo,j +
∑
m

To,j,m · ym,o,j ≤ wo+1,j ; ∀(o, j)|(o < Oj) (3.26)

∑
k∈Mo,j

ym,o,j = 1 ; ∀(o, j) (3.27)

qo,j,m = wo,j · ym,o,j ; ∀(m, o, j) (3.28)

qo,j,m + To,j,m · ym,o,j − Ω · (1− vo,j,o′,j′,m) ≤ qo′,j′,m ;

∀(o, j, o′, j′,m)|((oo,j 6= oo′,j′) ∧ (o, o′ ∈ Em))
(3.29)

qo′,j′,m + To′,j′,m · ym,o′,j′ − Ω · (1− vo′,j′,o,j,m) ≤ qo,j,m ;

∀(o, j, o′, j′,m)|((oo,j 6= oo′,j′) ∧ (o, o′ ∈ Em))
(3.30)

39

Chapter 3. Mathematical Model

vo,j,o′,j′,m + vo′,j′,o,j,m = ym,o,j · ym,o′,j′ ;

∀(o, j, o′, j′,m)|((oo,j 6= oo′,j′) ∧ (o, o′ ∈ Em))
(3.31)

wo,j and qo,j,m are greater than equal zero (3.32)

vo,j,o′,j′,m, vo′,j′,o,j,m, ym,o,j and ym,o′,j′ are binary (3.33)

The constraint in Eq. (3.25), along with the objective function, determine

the makespan. The constraint in Eq. (3.26) is to make sure that the processing

sequence of operations for each job corresponds to the prescribed order. The

constraint in Eq. (3.27) forces each operation to be assigned only to one machine.

In constraint given in Eq. (3.28), the logical relation between the variable qo,j,m

and wo,j is presented. The constraints in Eqs. (3.29) and (3.30) determine the

orientation of operation pair o and o′, if both of these operations are processed

on the same machine, and also force each machine to process only one operation

at a time. The constraint in Eq. (3.31) states that only one precedence relation

can be chosen for operation pair o and o′.

3.1.4. Time-indexed models for FJSP

These type of models are based on the time-index variables, which are first pro-

posed by Bowman (1959). In this approach, operations of jobs are assigned to

time periods of eligible machines. The application of this method for FJSP with

unparallel machines is extremely limited in literature. Thus, we skip the full

description of these type of models. Lastly, the other existing formulations in lit-

erature are the hybrid combination of the three aforementioned approaches. An

interested reader is encouraged to see Demir and Kürşat İşleyen (2013); Roshanaei

et al. (2013) for additional details regarding JSP and FJPS mathematical models.

40

Chapter 3. Mathematical Model

3.1.5. FJSP model with sequence-dependent setup time

Review of the literature reveals that almost all of the proposed MILP models for

FJSP with sequence-dependent setup time except the proposed model in Defersha

and Chen (2010b) lie in the category of precedence-variable based models (see for

example Imanipour (2006); Low and Wu (2001)). In this section, a precedence-

variable based MILP model which is proposed in Saidi and Fattahi (2007) is

presented. In addition to notations described in section 3.1.1, two extra variables

are required for the following model.

In the following formulation, the setup time for an operation o of job j

on machine m depends on the preceding operations and is denoted by So,j,m,o′,j′ ,

where operation o′ of a sublot of job j′ is the preceding operation on machine m.

Also binary variable v̂o,j,o′,j′,m takes the value 1 if the o′ th operation of job j′ is

the operation to be processed immediately after the completion of operation o of

job j on machine m , otherwise, it takes the value zero.

MILP Model D

Minimize:

Objective = cmax (3.34)

Subject to:

cmax ≥ co,j ; ∀(o, j) (3.35)

wo,j + To,j,m · ym,o,j ≤ co,j ; ∀(m, o, j) (3.36)

co,j ≤ wo+1,j ; ∀(o, j)|(o < Oj) (3.37)

wo,j + To,j,m + So,j,m,o′,j′ ≤ wo′,j′ + Ω · (1− v̂o,j,o′,j′,m) ; ∀(o, j, o′, j′,m) (3.38)

co,j +So,j,m,o′,j′ ≤ wo+1,j + Ω · (1− v̂o′,j′,o+1,j,m) ; ∀(o, j, o′, j′,m)|(o < Oj) (3.39)

41

Chapter 3. Mathematical Model

ym,o,j ≤ Po,j,m ; ∀(o, j,m) (3.40)∑
m

ym,o,j = 1 ; ∀(m, o, j) (3.41)

∑
o

∑
j

v̂o,j,o′,j′,m = ym,o′,j′ ; ∀(o′, j′,m) (3.42)

∑
o′

∑
j′

v̂o,j,o′,j′,m = ym,o,j ; ∀(o, j,m) (3.43)

v̂o,j,o,j,m = 0 ; ∀(o, j,m) (3.44)

wo,j and co,j are greater than equal zero (3.45)

v̂o,j,o′,j′,m and ym,o,j are binary (3.46)

The constraint in Eq. (3.35), along with the objective function, determine

the makespan. The constraints in Eqs. (3.36) and (3.37) are to make sure that

the processing sequence of operations for each job corresponds to the prescribed

order. The constraints in Eqs. (3.38) and (3.39) together ensure that only one

operation at a time is processed on a machine and also consider the setup time.

The constraint in Eq. (3.40) enforces each operation to be assigned only to the

eligible machines. Constraint Eq. (3.41) states that only one machine from set

of alternative machines can be selected for operation o of job j. The constraints

in Eqs. (3.42) and (3.43) together define the circular permutations of operations

on each machine. It means that the constraint given in Eq. (3.42) picks exactly

operation o′ of job j′ that has precedence over operation o of job j on machine

m, and the constraint in Eq. (3.43) picks exactly operation o of job j that imme-

diately follows operation o′ of job j′ on machine m. The circular permutations of

operations generates the processing sequence of operations on each machine.

42

Chapter 3. Mathematical Model

3.2. Problem Description and Notations

In this section, a problem description and notions for FJSP-LS problem in this

thesis are provided. Consider a job shop consisting of M machines where ma-

chines with common functionalities are grouped into a department (e.g. turning

machines in a turning department). Assume that the system is currently process-

ing jobs from previous schedules and each machine m (where m = 1, . . . , M) has

a release date Dm at which time it will be available for next schedule. Consider

also a total number of J independent jobs to be scheduled next in the system

where a job is a batch of identical parts. The number of parts in a batch of job j

(where j = 1, . . . , J) is given by Bj and this batch is to be split into Sj number

of unequal sublots (transfer batches). A decision variable bs,j is used to denote

the size of sublot s (where s = 1, . . . , Sj) of job j. Each sublot of job j is to

undergo Oj number of operations in a fixed sequence such that each operation

o (where o = 1, . . . , Oj) can be processed by one of several eligible machines.

To,j,m is unit processing time for an operation o of a sublot of job j on machine

m. An operation o of a sublot of job j can be started on an eligible machine

m after lag time Lo,j and after the setup is performed. The lag time Lo,j is a

waiting time that may be required either for cooling, drying or for some other

purpose. The setup time for an operation o of job type j on machine m depends

on the preceding operations and is denoted by So,j,m,o′,j′ , where operation o′ of a

sublot of job j′ is the preceding operation on machine m. If operation o of sublot

s of job j is the first operation to be processed on machine m, the setup time is

simply represented as S∗o,j,m. The setup time So,j,m,o′,j′ (or S∗o,j,m) for operation o

of a sublot of job j can be overlapped with the processing time of operation o− 1

of the same sublot if it is a detached setup and machine m is available for setup.

The problem is to determine the size of each sublot, to assign the operation of

each sublot to one of the eligible machines and to determine the sequence and

starting time of the assigned operations on each machine. The objective is to

43

Chapter 3. Mathematical Model

minimize the makespan of the schedule. We next introduce some additional no-

tations and then present a mixed integer linear programming (MILP) formulation

for FJSP-LS.

Additional Parameters:

Rm Maximum number of production runs of machine m where production

runs are indexed by r or u = 1, 2,, Rm; Each of these production

runs can be assigned to at most one sublot. Thus the assignment of

the operations to production runs of a given machine determines the

sequence of the sublots on that machine;

Po,j,m A binary data equal to 1 if operation o of a sublot job j can be processed

on machine m, 0 otherwise;

Ao,j A binary data equal to 1 if setup of operation o of a sublot of job j is at-

tached (non-anticipatory), or 0 if this setup is detached (anticipatory);

and

Ω Large positive number.

Variables:

Continuous Variables:

cmax Makespan of the schedule;

co,s,j,m Completion time of operation o of sublot s of job j on machine m;

ĉr,m Completion time of the rth run of machine m; and

bs,j Size of sublot s of job j.

Binary Integer Variables:

xr,m,o,s,j A binary variable which takes the value 1 if the rth run on machine m

is for operation o of sublot s of job j, 0 otherwise;

44

Chapter 3. Mathematical Model

yr,m,o,j A binary variable which takes the value 1 if the rth run on machine m

is for operation o of any one of the sublots of job j, 0 otherwise;

γs,j A binary variable that takes the value 1 if sublot s of job j is non-zero

(bs,j ≥ 1), 0 otherwise; and

zr,m A binary variable that takes the value 1 if the rth potential run of

machine m has been assigned to an operation, 0 otherwise;

3.3. MILP Model for FJSP-LS

Following the problem description and using the notations given above, the MILP

mathematical model for the FJSP-LS is presented below.

Minimize:

Objective = cmax (3.47)

Subject to:

cmax ≥ co,s,j,m ; ∀(o, s, j,m) (3.48)

ĉr,m ≥ co,s,j,m + Ω · xr,m,o,s,j − Ω ; ∀(r,m, o, s, j) (3.49)

ĉr,m ≤ co,s,j,m − Ω · xr,m,o,s,j + Ω ; ∀(r,m, o, s, j) (3.50)

ĉ1,m − bs,j · To,j,m − S∗o,j,m − Ω · x1,m,o,s,j + Ω ≥ Dm ; ∀(m, o, s, j) (3.51)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ − Ω · (yr−1,m,o′,j′ + xr,m,o,s,j) + 2Ω ≥ ĉr−1,m ;

∀(r,m, o, s, j, o′, j′)|(r > 1) (3.52)

ĉ1,m − bs,j · To,j,m − S∗o,j,m ·Ao,j −Ω · (x1,m,o,s,j + xr′,m′,o−1,s,j) + 2Ω ≥ ĉr′,m′ +Lo,j ;

∀(m, r′,m′, o, s, j)|{((1,m) 6= (r′,m′)) ∧ (o > 1)} (3.53)

45

Chapter 3. Mathematical Model

ĉr′,m′ + Lo,j ≤ ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ · Ao,j −

− Ω · (yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j) + 3Ω ;

∀(r,m, r′,m′, o, s, j, o′, j′)|{(r > 1) ∧ (o > 1) ∧ (r,m) 6= (r′,m′) ∧ (o, j) 6= (o′, j′)}
(3.54)

yr,m,o,j ≤ Po,j,m ; ∀(r,m, o, j) (3.55)

yr,m,o,j =

Sj∑
s=1

xr,m,o,s,j ; ∀(r,m, o, j) (3.56)

M∑
m=1

Rm∑
r=1

xr,m,o,s,j = γs,j ; ∀(o, s, j) (3.57)

bs,j ≤ Bj · γs,j ; ∀(s, j) (3.58)

γs,j ≤ bs,j ; ∀(s, j) (3.59)

Sj∑
s=1

bs,j = Bj ; ∀(j) (3.60)

J∑
j=1

Sj∑
s=1

Oj∑
o=1

xr,m,o,s,j = zr,m ; ∀(r,m) (3.61)

zr+1,m ≤ zr,m ; ∀(r,m) (3.62)

xr′,m,o′,s,j ≤ 1− xr,m,o,s,j ; ∀(r, r′,m, o, o′, s, j)|{(o′ > o) ∧ (r′ < r)} (3.63)

xr′,m,o′,s,j ≤ 1− xr,m,o,s,j ; ∀(r, r′,m, o, o′, s, j)|{(o′ < o) ∧ (r′ > r)} (3.64)

xr,m,o,s,j, yr,m,o,j, γs,j and zr,m are binary (3.65)

The objective function in Eq. (3.47) is to minimize the makespan of the

schedule. The constraint in Eq. (3.48), along with the objective function, deter-

mines the makespan. The constraints in Eqs. (3.49) and (3.50) together state

that the completion time of the oth operation of sublot s of job j is equal to the

completion time of the rth run of machine m if this production run is assigned

to that particular operation. The starting time of the setup for the first run

(r = 1) of machine m is given by ĉ1,m − bs,j · To,j,m − S∗o,j,m if the oth operation of

46

Chapter 3. Mathematical Model

sublot s of job j is assigned to this first run. This starting time cannot be less

than the release date of machine Dm as enforced by the constraint in Eq. (3.51).

The constraint in Eq. (3.52) is to enforce the requirement that the setup of any

production run r > 1 of a given machine cannot be started before the completion

time of run r − 1 of that machine. The constraint in Eq. (3.53) states that for

any pair of machines (m,m′), the setup (if Ao,j = 1) or the actual processing (if

Ao,j = 0) of the first run on machine m cannot be started before the completion

time of run r′ of machine m′ plus lag time Lo,j. This constraint is applied if first

run of machine m is assigned to operation o of sublot s of job j and run r′ of

machine m′ is assigned to operation o − 1 of this same sublot. The constraint

in Eq. (3.54) is similar to that in Eq. (3.53) except that Eq. (3.54) is for run

r > 1 of machine m. In this case, the sequence dependent setup time has to be

considered by taking into account the operation that was processed in run r − 1

of machine m. The constraint in Eq. (3.55) states that a production run r of

machine m can be assigned to operation o of any one of sublots of job j if this

operation can be performed on this machine. Constraint 3.56 depicts the logical

relation between the binary variable yr,m,o,j and xr,m,o,s,j. If the size of sublot s

of job j is positive (γs,j = 1), an operation o of this sublot must be assigned to

exactly one production run of one machine (Eq. 3.57). However, if the size of this

sublot is zero, it should not be assigned to any production run. The constraint

in Eq. (3.58) forces the binary variable γs,j to take the value 1 if the sublot size

bs,j is greater than zero. If the sublot size bs,j = 0, the binary variable γs,j is

forced to take the value 0 by the constraint in Eq. (3.59). The constraint in Eq.

(3.60) states that the sum of the sizes of the sublots of job j equals the batch

size of this job. Each production run of a given machine can be assigned to at

most one operation (Eq. 3.61), and production run r + 1 can be assigned to an

operation if and only if run r of that machine is already assigned (Eq. 3.62).

The constraints given in Eqs. (3.63) and (3.64) are used to speed up the branch

47

Chapter 3. Mathematical Model

and bound procedure in solving small size problems. These constraint sets are

not required to model the problem as the relations have been imposed by the

constraints in Eqs. (3.53) and (3.54). The constraint in Eq. (3.63) accounts for

the fact that if an operation o of sublot s of job j is assigned to a production run

r of machine m, any upcoming operation o′ of this sublot cannot be assigned to

any earlier run r′ of machine m. The constraint in Eq. (3.64) is a mirror image

of constraint Eq. (3.63). It states that if an operation of a sublot of a given job

is assigned to a production run of a machine, any earlier operation of that sublot

cannot be assigned to any upcoming production run of that machine. Integral

requirements on the variable xr,m,o,s,j, yr,m,o,j, γs,j and zr,m are given Eq. (3.65).

48

Chapter 4

The Proposed Algorithm

A parallel pure genetic algorithm was developed in Defersha and Chen (2012) to

solve the FJSP-LS model presented in the previous section. In this section, we

present a way of combining the pure genetic algorithm with linear programming

to create an efficient sequential hybrid algorithm. The resulting hybrid algorithm

utilizes a single computational resource and still outperforms or performs equally

with the resource-intensive parallel pure genetic algorithm. The following sections

convey the common and distinct features of both the pure and the hybrid genetic

algorithms.

4.1. Pure Genetic Algorithm

A Genetic algorithm evolves a population of individuals. Each individual serves

as a candidate solution of the problem to be solved. In this section, various

elements of the pure genetic algorithm developed in Defersha and Chen (2012)

are presented. Moreover, the description of the main components of the genetic

algorithm developed in Defersha and Chen (2010b) for FJSP is also demonstrated

in some subsections to better understand the evolution of the algorithm. This

will help the reader to see how the GA for FJSP is developed to be employed in

49

Chapter 4. Solution Procedure

the FJSP-LS problem.

Solution representation for FJSP

The first key step in genetic algorithm implementation is to construct a proper

representation scheme for a particular problem. In this subsection, firstly, we

have brief review of the solution representation addressed in Defersha and Chen

(2010b) for FJS problem. Then, the solution representation technique which is

used in this thesis for FJSP-LS is fully discussed. In applying genetic algorithm

to FJS problems, Chen et al. (1999); Kacem (2003); Pezzella et al. (2008); Gao

et al. (2008); Zhang et al. (2011); Wang et al. (2013) used solution representa-

tions, capable of encoding both assignment and sequencing of operations on the

various machines. Here, a solution representation, which is used in Defersha and

Chen (2010b) for FJS problem with sequence dependent setup time is presented.

In this representation, every gene in the chromosome is represented by a triplet

(j, o, m) denoting the assignment of the oth operation of job j to machine m.

The sequence of the genes in the chromosome expresses the sequences of the op-

erations on every machine. The assignment of feasible operations to the machines

and a job’s operation processing sequence for the small example in Table 4.1 is

illustrated in the Figure 4.1. It is noteworthy to point out that the solution rep-

resentation for classical JSP is very similar to FJSP, with this difference, that

every gene in JSP is represented by a twin (j, o).

Table 4.1: An example small flexible job-shop problem (FJSP)

Set of eligible machines
for operation

Job No. of Operations o1 o2 o3

j1 3 {m1, m2} {m3} {m2, m4}
j2 2 {m3, m4} {m2}
j3 3 {m3} {m2, m4} {m1, m3}

50

Chapter 4. Solution Procedure

3
,

1
,

3

1 2

2
,

1
,

3

1
,

1
,

2

3 4

1
,

2
,

3

5 6

1
,

3
,

4

7 8

3
,

3
,

1

j,
 o

,
m

j = job index, o= operations index, m=machine index

3
,

2
,

2

2
,

2
,

2

Figure 4.1: Solution representation for solving the FJSP using GA

Solution representation for FJSP-LS

In the previous subsection, the representation scheme for applying GA for FJSP

was introduced. Comparable representations can be used in solving the FJSP-LS

if each sublot is considered as a job and an extra representation is augmented

to encode the size and the number of sublots of each job. A way to understand

this representation is to think of a situation in which four machines are pro-

cessing three jobs in a flexible job shop system. The properties of this system,

including the number of operations, the maximum number of sublots for each

job, and the set of eligible machines for each operation are given in Table 4.2.

Using the method introduced in Kacem (2003), assignment of feasible operations

to the machines and a job’s operation processing sequence can be encoded in a

chromosome as depicted in Figure 4.2. Every sublot is considered as a job, and

each gene in the chromosome is represented by a quadruple (j, s, o, m) denoting

the assignment of the oth operation of sublot s of job j to machine m. The se-

quence of the genes in the chromosome expresses the sequences of the operations

on every machine. For instance, through looking to the genes from left to right

the assignment and sequencing of operations on machine-1 can be interpreted as

follows: (j1, s3, o1)→(j3, s2, o3)→(j3, s3, o3). These data are obtained from the

genes at locations 10, 22 and 23 on the chromosome where m = 1. The assign-

ment of operations to the other machines and their sequences as decoded from

the chromosome is given in Table 4.3. In this solution representation, in order to

51

Chapter 4. Solution Procedure

ensure that precedence requirement of the operations of a particular sublot are

not violated, for a given j and s, the gene (j, s, o,m) always lies to the right hand

side of all the other genes (j, s, o′,m′) having o′ < o.

Table 4.2: An example small flexible job-shop problem with lot streaming (FJSP-LS)

Set of eligible machines
for operation

Job No. of Operations Max No. of Sublots o1 o2 o3

j1 3 3 {m1, m2} {m3} {m2, m4}
j2 2 2 {m3, m4} {m2}
j3 3 3 {m3} {m2, m4} {m1, m3}

Figure 4.2: Representation of the assignment of operations to machines and their sequencing

Table 4.3: Operation assignment and sequencing decoded from Figure 4.2

Operation assigned to production run

Machine r1 r2 r3 r4 r5 r6 r7 r8

m1 (j1, s3, o1)(j3, s2, o3)(j3, s3, o3)

m2 (j1, s2, o1)(j3, s1, o2)(j1, s1, o1)(j3, s3, o2)(j2, s1, o2)(j2, s2, o2)(j1, s2, o3)

m3 (j3, s2, o1)(j2, s1, o1)(j3, s1, o1)(j3, s3, o1)(j1, s2, o2)(j1, s1, o2)(j3, s1, o3)(j1, s3, o2)

m4 (j2, s2, o1)(j3, s2, o2)(j1, s1, o3)(j1, s3, o3)

52

Chapter 4. Solution Procedure

In order to solve the discussed FJSP-LS model using GA, it is essential

to include the number of sublots for each job and their sizes into our solution

representation. Whereas, the chromosome in Figure 4.2 is capable only of encod-

ing the assignment and sequencing of the operations of the sublots. Therefore,

a left hand side segment (LHS-Segment) has been added to this chromosome as

depicted in Figure 4.3. In this segment, every gene is represented by αs,j, which

takes a random value in the interval [0, 1]. The value each αs,j takes is used in

Eq. (4.1) in order to compute the size of the sth sublot of operation o of job j. It

is possible for a certain sublot to have a size of zero if its corresponding αs,j has

a value equal to zero. In this case, the size of a sublot is computed by dividing

the number of parts in a batch of job j (Bj) to the maximum number of sublots

of j (Sj). Thus, the maximum and actual numbers of sublots for each job and

their sizes are encoded in the LHS-Segment.

After the sublot sizes are determined using the equation Eq. (4.1), some

sublot may be found too small. To conserve both setup and processing times,

overly small sublots should be omitted because it would be ineffective to spend

considerable amounts of time setting up a very small sublot. As a result, after

calculating the sublot sizes, any sublot with a size less than degeneration limit d

(less than d× 100% of whole lot size), is considered az zero. This means that the

corresponding αs,j of those excessively small sublots are reset to zero and excluded

from solution procedure. Subsequently, the Eq. (4.1) is used again to calculate

the size of sublots. This process is performed using sublot size degenerator (SSD),

operator.

bs,j =


αs,j∑Sj
s=1 αs,j

×Bj ; if
∑Sj

s=1 αs,j > 0

Bj/Sj ; otherwise

(4.1)

53

Chapter 4. Solution Procedure

Figure 4.3: Solution representation used in this thesis to solve the FJSP-LS using GA

4.1.1. Selection operator

The process of selecting two parents from the population for reproduction is called

selection. The aim of selection in genetic algorithm is to highlight individuals

with higher fitness, in hopes that their resulting offsprings are fitter individuals

(Sivanandam and Deepa, 2007). Here in this thesis, we used k − way tourna-

ment selection operator, which was introduced in Goldberg et al. (1989). This

selection operator is involved in holding competition among k randomly selected

individuals, and choosing the one with the highest fitness (smallest makespan) as

a winner of the tournament. The copy of the winner of the competition is then

inserted into the mating pool, and all the selected chromosomes are placed back

in the mating pool. The procedure is repeated until the size of the mating pool

is the same as the current population size.

4.1.2. Crossover operators

After the selection of chromosomes for reproduction, crossover operator is applied

to combine the features of two parents in order to produce a new child with a view

to enriching the population with better chromosomes (Sivanandam and Deepa,

2007). In this subsection, at the beginning, we provide the description of the

crossover operators presented in Defersha and Chen (2010b) for FJS problem.

These operators which were first devised in Kacem (2003) are also employed in

54

Chapter 4. Solution Procedure

the GA used in this thesis for FJSP-LS. Finally, at the end of this subsection,

three additional crossover operators, which are required for FJSP-LS are also

discussed.

Crossover operators for FJSP

In general, the crossover operators for FJSP can be categorized as assignment or

sequence crossover operators. The assignment crossover operators play the role

of generating offsprings by exchanging the assignment properties of the mating

chromosomes. Operation-to-machine assignment crossover (OMAC) is such an

operator. As depicted in Figure 4.4, by using OMAC, two offsprings will be

produced from two randomly chosen parent chromosomes, where the sequence of

operations in each parent is preserved in its corresponding child. The first step in

this approach is to randomly select operations from parent 1. Then, the second

step is to copy all the genetic materials of parent 1 to the offspring except the

assignment information of the selected operations. The final step is to obtain

the assignment properties of the selected operations from parent 2, and then

copy them to the corresponding genes in the offspring to produce a new child.

The same procedure is repeated to create child 2, but with the difference that the

procedure begins from parent 2. It is important to note that assignment crossover

operators are not applicable for classical job shop since there exist no alternative

routings for operations in JSP.

On the other hand, the role of sequence crossover operators are to produce

two new offsprings by exchanging the sequencing properties of parent chromo-

somes, while the assignment properties of the parents will be inherited to the

corresponding offsprings. Job level operation sequence crossover (JLOSC) is such

an operator. In this approach, the first step is to randomly select an operation

from parent 1. The next step is to copy all genetic materials of the genes, which

are associated with the chosen job to the offspring. The final step is to fill the

55

Chapter 4. Solution Procedure

empty genes in the offspring chromosome, while the machine-assignment infor-

mation of the empty genes are preserved from parent 1. This is done through

copying the remaining operations from parent 2 to empty genes, while opera-

tions retain their appearance order from the second parent. The reproduction

procedure using this crossover is illustrated in Figure 4.5. Unlike the sequence

crossover operators, these types of operators are also applicable for a classical

JSP.

3
,

1
,

3

2
,

1
,

3

1
,

1
,

2

1
,

2
,

3

1
,

3
,

4

3
,

3
,

1

3
,

2
,

2

2
,

2
,

2

3
,
1

,
3

2
,
1

,
3

1
,
1

,
×

1
,
2

,
3

1
,
3

,
×

3
,
3

,
1

3
,
2

,
×

2
,
2

,
2

3
,

1
,

3

2
,

1
,

3

1
,

1
,

1

1
,

2
,

3

1
,

3
,

2

3
,

3
,

1

3
,

2
,

4

2
,

2
,

2

1
,
1
,

1

2
,
2
,

2

2
,
1
,

4

3
,
1
,

3

3
,
3
,

3

1
,
3
,

2

1
,
2
,

3

3
,
2
,

4

Step 1

* * *

Step 2

Step 3

Parent 1

Child 1

Child 1

Parent 2

j,
 o

,
m

Figure 4.4: Operation-to-machine assignment

crossover (OMAC) operator

3
,

1
,

3

2
,

1
,

3

1
,

1
,

2

1
,

2
,

3

1
,

3
,

4

3
,

3
,

1

3
,

2
,

2

2
,

2
,

2

1
,
1

,
2

1
,
2

,
3

1
,
3

,
4

1
,
1
,

1

2
,
2
,

2

2
,
1
,

4

3
,
1
,

3

3
,
3
,

3

1
,
3
,

2

1
,
2
,

3

3
,
2
,

4

Step 1

*

Step 2

Step 3

Parent 1

Child 1

Child 1

Parent 2

j,
 o

,
m

1
,
1

,
2

1
,

2
,

3

1
,
3

,
4

3
,

2
,

2

3
,

3
,

1

2
,
1

,
3

2
,
2

,
2

3
,

1
,

3

Figure 4.5: Job level operation sequence

crossover (JLOSC) operator

Crossover operators for FJSP-LS

All the previously mentioned crossover operators for FJSP are also applied to the

RHS segment of the chromosome in FJSP-LS problem in this thesis. However,

56

Chapter 4. Solution Procedure

three additional crossover operators are required in solving FJSP-LS problem

using GA, including two single point crossovers (SPC-1 and SPC-2) and sublot

level operations sequence crossover (SLOSC). As illustrated in Figure 4.6, single

point crossovers randomly choose a crossover point along the length of the LHS

segment of the parent chromosomes. Then, when SPC-1 (SPC-2) is applied, the

portion of the LHS segment of the mating chromosomes to the left (right) of the

arbitrarily chosen crossover point is exchanged.

SLOSC is almost identical to JLOSC, with one minor difference: in step

2 of SLOSC, only the genetic materials of the arbitrarily chosen genes with the

same sublot and job indexes are copied to the offsprings. In the GA used in this

thesis for FJSP-LS, an individual chromosome may be subjected to SPC-1, SPC-

2, OMAC, JLOSC and SLOSC operators with the probabilities equal to ρ1, ρ2,

ρ3, ρ4 and ρ5, respectively. It is noteworthy to mention that application of any

of the RHS segment specific crossover operators will never violate the precedence

constraint of the operations in the newly produced offsprings.

Figure 4.6: Single point crossover operators (SPC-1 and SPC-2)

57

Chapter 4. Solution Procedure

4.1.3. Mutation operators

After crossover, each obtained offspring may undergo mutation with prespecified

probability. The role of mutation operators is to prevent the algorithm from be-

ing trapped in local optima, and to maintain genetic diversity in the population.

Unlike the role of crossover operator in exploiting the current solution for better

ones, mutation operator plays the role of exploring whole search space (Sivanan-

dam and Deepa, 2007). In this subsection, initially, the mutation operators used

in Defersha and Chen (2010b) for FJSP are described. These mutation opera-

tors which are originally adopted from Kacem (2003) are also applied in the GA

used in this thesis for FJSP-LS. Eventually, at the end of this subsection, two

additional mutation operators applied in this study are also discussed.

Mutation operators for FJSP

Similar to crossover operators, mutation operators also can be categorized as

assignment or sequence mutation operators. The role of assignment mutation op-

erators is to alter the assignment properties of operations in an individual, while

the processing sequence of operations on the machines remains unchanged. The

random operation assignment mutation (ROAM) is such an operator. ROAM is

applied with a small probability on few operations of a given individual chromo-

some. It changes the assignment property of the selected operation, and assign

that operation to one of its alternative machines. Figure 4.7 illustrates the cre-

ation of new offsprings using this approach based on the small example in 4.1.

Intelligent operations assignment mutation (IOAM) is another operator in

the category of assignment mutation operators. In this approach, an operation

on the most loaded machine is reassigned to the least loaded compatible one.

The operations sequence shift mutation (OSSM) is in class of sequence mutation

operator. Whenever OSSM is applied on an individual, an operation is selected

and then moved to another position on the chromosome in such a way that no

58

Chapter 4. Solution Procedure

precedence constraint is violated.

3
,

1
,

3

2
,

1
,

3

1
,

1
,

2

1
,

2
,

3

1
,

3
,

4

3
,

3
,

1

3
,

2
,

2

2
,

2
,

2

1
,
1
,
2

1
,
2
,
3

1
,
3
,
2

*

Selected individual Before

random operation

assignment mutation j,
 o

,
m

*

3
,
1
,
3

2
,
1
,
3

3
,
2
,
4

2
,
2
,
2

3
,
3
,
1Selected individual Before

random operation

assignment mutation

Figure 4.7: Random operation assignment mutation operator

Mutations operators for FJSP-LS

All the previously discussed mutation operators are also applied to the RHS

segment of the chromosome in FJSP-LS problem in this thesis. However, three

additional mutation operators are applied in the GA used in this thesis for FJSP-

LS problem. These operators include sublot step mutation (SStM), sublot swap

mutation (SSwM) and sublot size degenerator (SSD).

The operator SStM is applied with small probability σ1 on each gene αs,j

in the LHS segment of each chromosome. Whenever it is applied on a gene, it

increases or decreases the value of αs,j using the equations αs,j = min{1, αs,j + θ}

and αs,j = min{0, αs,j − θ}, respectively. In every application of this operator,

the step amount θ is calculated using the equation θ = θmax · rand(), where the

value of parameter θ lies between zero and one, and rand() generates random

number in range of [0,1]. Another LHS segment specific mutation operator is

SSwM, which is applied with small probability σ2 on a pair of genes with same j

index (αs,j and αs′,j), and swaps their values. SSD is another mutation operator

for LHS segment of the chromosome. This non-probabilistic operator is employed

59

Chapter 4. Solution Procedure

to set the value of αs,j = 0 if αs,j/
∑Sj

s=1 αs,j is less than the degeneration limit

d. Moreover, in the GA used in this study, an individual chromosome may un-

dergo ROAM, IOAM and OSSM with the probabilities equal to σ3, σ4 and σ5,

respectively.

4.1.4. Fitness evaluation in pure GA

The fitness of a chromosome is evaluated using the makespan of the schedule

corresponding to that given chromosome. In this subsection, the evaluation pro-

cedure used in Defersha and Chen (2012) for the pure GA is elaborated. In our

proposed method, whenever we employ pure GA, the same procedure for finding

the fitness value of chromosomes is used. When calculating the makespan, fol-

lowing items are considered: (1) the dependence of setup time on the sequence;

(2) the nature of the setup, attached or detached; (3) lag time requirement of

certain operations; (4) machine release dates; and (5) the possibility of the sizes

of certain sublots becoming zero. The fitness evaluation procedure is outlined

below.

Step 1. Using the information obtained from the LHS-Segment of the chromo-

some and Eq. (4.1), calculate the sizes of the sublots of the various

jobs.

Step 2. Set l = 1

Step 3. Set the values of indices j, s, o and m as obtained from the gene at

location l of the RHS-Segment of the chromosome.

Step 4. If bs,j is greater than zero, then go to Step 5; otherwise go to Step 6.

Step 5. Calculate the completion time co,s,j,m

60

Chapter 4. Solution Procedure

• If (1) operation o of sublot s of job j is the first operation assigned

to machine m and (2) o = 1, then:

co,s,j,m = Dm + S∗o,j,m + bs,j · To,j,m.

• If (1) operation o of sublot s of job j is the first operation assigned

to machine m, (2) o > 1, and (3) operation o-1 is assigned to

machine m′, then:

co,s,j,m = max{Dm + (1−Ao,j)×S∗o,j,m; co−1,s,j,m′ +Lo,j}+ bs,j ×

To,j,m + Ao,j × S∗o,j,m.

• If (1) operation o′ of sublot s′ of job j′ is the operation to be

processed immediately before operation o of job sublot s of j on

machine m and (2) o = 1, then:

co,s,j,m = co′,s′,j′,m + So,j,m,o′,j′ + bs,j · To,j,m.

• If (1) operation o′ of sublot s′ of job j′ is the operation to be

processed immediately before operation o of sublot s of job j on

machine m, (2) o > 1, and (3) operation o-1 is assigned to machine

m′, then:

co,s,j,m = max{co′,s′,j′,m+(1−Ao,j)×So,j,m,o′,j′ ; co−1,s,j,m′ +Lo,j}+

bs,j × To,j,m + Ao,j × So,j,m,o′,j′ .

Step 6. If l is less than the total number of genes of the RHS-Segment of the

chromosome, increase its value by 1 and go to Step 3; otherwise go to

Step 7

Step 7. Calculate the makespan of the schedule as cmax = max{co,s,j,m; ∀(o, s, j,m)}

and set the fitness of the solution to cmax.

The above procedure, in particular Step 5, is based on the property of the

chromosomes that, for a given j and s, the gene (j, s, o,m) always lies to the

right of all the other genes (j, s, o′,m′) having o′ < o. Because of this property

61

Chapter 4. Solution Procedure

of the chromosome, whenever the completion time of operation (j, s, o,m) on

machine m is to be calculated, the completion time of operation (j, s, o−1,m′) is

already calculated and available, regardless of the machine to which the preceding

operation is assigned. Moreover, the completion time of the operation (j′, s′, o′,m)

to be processed on machine m immediately before operation (j, s, o,m) will also

be calculated and available.

4.2. Linear Programming Subproblem

The MILP model that has been elaborated in section 3.3 is for the purpose of

solving FJSP-LS problem on a small scale. It has been used in Defersha and

Chen (2012) with the intention of validating the correctness of the pure GA in

small-sized problems. However, the MILP model had no role in Pure GA solution

procedure. In our proposed algorithm, however, a linear programming subprob-

lem is applied with the aim of determining the optimal values of the continuous

variables corresponding to the values of the integer variables of promising so-

lutions. This linear programming (LP) subproblem is formulated based on the

MILP model given in section 3.3. In the algorithm proposed here, once GA solves

FJPS-Problem, it provides us the information about job assignments, sequence

of operations and also the number and size of sublots. Having this information,

it enables finding answers to the following questions:

• whether the rth run on machine m is for operation o of sublot s of job j or

not;

• whether the rth run on machine m is for operation o of any one of the

sublots of job j or not ;

• whether sublot s of job j is non-zero or not; and

62

Chapter 4. Solution Procedure

• whether the rth potential run of machine m has been assigned to any oper-

ation.

Answers to the above questions reveal the values of unknown variables (xr,m,o,s,j,

yr,m,o,j, γs,j and zr,m), respectively. As a result, in formulating the new LP model,

some of the equations from the main model are omitted as they were composed of

only the binary variables. The rest of the equations in MILP model are modified

slightly and inserted into the LP subproblem, provided that variable γs,j = 1.

Also, objective function remains unchanged. In the MILP model, constraints in

Eqs. (3.49) and (3.50) were used to set cr,m = co,s,j,m if variable xr,m,o,s,j = 1.

Nevertheless, these two equations can be merged together and form Eq. (4.4) in

LP model since variable xr,m,o,s,j is known to us. Likewise, knowing the values of

xr,m,o,s,j, we can replace Eq. (3.51) with Eq. (4.5). In general, by knowing the

values of binary variables, all Ω parameters can be removed from Eqs. (3.52),

(3.53) and (3.54) which results in Eqs. (4.6), (4.7) and (4.8), respectively. The

constraints in Eqs. (3.48) and (3.60) are also applicable in the new LP model;

however, constraints in Eqs.(3.58), (3.59), (3.61), (3.62), (3.63) and (3.64) are not

required in the LP model, because these equations were originally implemented

in the the MILP model to determine binary variables.

LP: given (xr,m,o,s,j, yr,m,o,j, γs,j, zr,m) for all (r,m, o, s, j)

Minimize:

Objective = cmax (4.2)

Subject to:

cmax ≥ co,s,j,m ; ∀(o, s, j,m)|(γs,j = 1) (4.3)

ĉr,m = co,s,j,m ; ∀(r,m, o, s, j)|{(xr,m,o,s,j = 1) ∧ (γs,j = 1)} (4.4)

63

Chapter 4. Solution Procedure

ĉ1,m− bs,j ·To,j,m−S∗o,j,m ≥ Dm ; ∀(m, o, s, j)|{(x1,m,o,s,j = 1)∧ (γs,j = 1)} (4.5)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ≥ ĉr−1,m ;

∀(r,m, o, s, j, o′, j′)|{(r > 1) ∧ (yr−1,m,o′,j′ + xr,m,o,s,j = 2) ∧ (γs,j = 1)}
(4.6)

ĉ1,m − bs,j · To,j,m − S∗o,j,m · Ao,j− ≥ ĉr′,m′ + Lo,j ;

∀(m, r′,m′, o, s, j)|{[(1,m) 6= (r′,m′)] ∧ (o > 1)

∧(x1,m,o,s,j + xr′,m′,o−1,s,j = 2) ∧ (γs,j = 1)}

(4.7)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ · Ao,j ≥ ĉr′,m′ + Lo,j ;

∀(r,m, r′,m′, o, s, j, o′, j′)|{(r > 1)∧ (o > 1)∧ [(r,m) 6= (r′,m′)]∧ [(o, j) 6= (o′, j′)]

∧ (yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j = 3) ∧ (γs,j = 1)} (4.8)

∑
∀s|(γs,j=1)

bs,j = Bj ; ∀(j) (4.9)

Once the LP model is solved, the optimum value of continuous variables

cmax, co,s,j,m, ĉr,m and bs,j will be determined. The fitness value of each individual

is then replaced with the corresponding cmax. For each individual, the size of

sublot S of Job j is updated by bs,j value obtained from the solver. Afterward,

the value of αs,j is updated by dividing the value of the corresponding sublot size

by the lot size. It is worth taking into consideration that the optimum value of

a particular bs,j may be equal to zero after solving the LP model. In this case,

that particular sublot is omitted from solution procedure, and LP model will be

solved again.

64

Chapter 4. Solution Procedure

4.3. Steps of the Algorithm

In the pure GA approach, the right hand side of the chromosome (solution rep-

resentation) has responsibility to assign jobs to machines and also determine the

sequence of operations in each machine. On the other hand, the left hand side

of the chromosome has the task of determining the size of sublots for each job.

However, in the proposed hybrid GA, while the job assignment and sequence of

operations are predetermined by right hand side of chromosome, LP is responsible

for lot streaming, and left hand side of the chromosome only provides LP with

the information about the number of sublots. As stated before, after determining

the sublot sizes using the GA, the sublots with overly small sizes are excluded

from solution. Using this information, LP determines the size of the remaining

sublots, and updates the corresponding αs,j values in LHS of chromosome. The

step of the proposed algorithm are depicted in the flow chart given on the next

page. The following notations are used in this flowchart. The steps were coded in

C++, and simplex subroutines within ILOG CPLEX package ILOG Inc. (2008)

was applied to solve the LP model.

i Generator counter

p Population index

imax Maximum number of generations

PS Population size

65

Chapter 4. Solution Procedure

L
in

e
a
r

p
ro

g
ra

m
m

in
g

 s
e
c
ti

o
n

Start

Set i=1

Randomly generate

the initial population

of PS individuals

Constitute

Parent

population

Apply genetic

operators

(Selection,

Crossover and

Mutation)

Calculate the

sublot sizes, using

equation (20)

Does any sublot in LHS

has a size less than 10%

of the lot size?

Exclude those sublots from

solution and reset the size

index of them to zero

Is i value a multiple of

10?

No

No

Evaluate the

fitness

LP model

formulation

Solve the LP

model

Extract binary

variables from the

individual

chromosome
Does any

sublot have a

size of zero?

Current best individual ≥

Best individual so far

found

No

Obtain solution of LP, including

continuous variables

𝑐𝑚𝑎𝑥 ; 𝑐𝑜,𝑠,𝑗 ,𝑚 ; 𝑐 𝑠,𝑗 ; 𝑏𝑠,𝑗

Using the sublot

sizes, update the

value of
𝛼𝑠,𝑗

Update the best

individual so far

found

Yes

Does

i=i max

P=P+1

Yes

i=i+1

No

P=PS / 10

Omit those sublot

Yes

Yes

No

Stop

Yes

No

𝑀𝑎𝑘𝑒
 𝛼𝑠,𝑗 = 0

Yes

Sort the population based on their

fitness and choose the top 10% of

the individuals

Set p=1

Figure 4.8: Linear programming assisted genetic algorithm flowchart

66

Chapter 4. Solution Procedure

4.4. Implementation Techniques

The term ”assisted” which is used in this thesis has been derived from the way

LP is implemented in our approach. In the proposed hybrid GA, LP has not

been used in every generation. Instead, it is applied with specific frequency. In

addition, before using LP in an iteration, individuals are sorted in ascending order

based on their makespan, and LP is applied on only the proportion of population

with best fitness values. In this thesis, in every ten iterations, LP is applied on

top 10% of population. With this type of application of LP, while the ability of

pure GA to find promising regions in a solution space in a relatively short time

is preserved, the convergence behavior of pure GA is significantly improved.

In order to use LP in the proposed algorithm, the above LP model needs to

be formulated and then implemented in ILOG-CPLEX modelling environment

based on a solution generated by GA. It means that in an iteration in which

the LP is supposed to be used, the data regarding the job assignments, their

sequences and number of sublots are provided by the chromosome, and then

based on these data the LP model is formulated and then implemented in the

CPLEX software. The method which is used to insert constraints into the CPLEX

software can have a great effect on the solution speed. One simple yet lengthy

way is, for every possible combination of indexes of an equation, check whether

that particular constraint applies to the information obtained from GA, and if it

applies that constraint is added to the model in CPLEX software. The following

pseudocode in algorithm 1 illustrates how the mentioned method works. We

called this implementation method as a direct approach.

As can be seen, using this method for adding constraints into the solver

model results in having enormous amount of For-loops which significantly slows

up the solution procedure. For a particular equation in LP model, the number

of loops which are needed to insert all constraints originated from that equation

is equal to the number of possible combinations of indexes in that equation.

67

Chapter 4. Solution Procedure

Algorithm 1 Direct approach for formulation and implementation of LP

1: for m(1)→ m(MaximumNumberofMachines) do
2: for j(1)→ j(MaximumNumberofJobs) do
3: for s(1)→ s(MaximumNumberofSublotsForJob.j) do
4: for o(1)→ o(MaximumNumberofOperationsForJob.j) do
5: if Operation (1) of Job(j) requires Machine(m) then Implement Eq.

(4.3)
6: end if
7: if run(1) on machine(m) is for operation(o) of sublot (s) of job (j)

then Implement Eq. (4.5) for this j, s, o,m, r
8: end if
9: for r(1)→ r(MaximumNumberofRuns) do

10: if run(r) on machine(m) is for operation(o) of sublot (s) of job
(j) then

Eq. (4.4) for this j, s, o,m
11: end if
12: end for
13: for j′(1)→ j′(MaximumNumberofJobs) do
14: for o′(1)→ o′(MaximumNumberofOperationsForJob.j′) do
15: for r(2)→ r(MaximumNumberofRuns) do
16: if run(r) on machine(m) is for operation(o) of sublot (s)

of job (j) then
17: if run (r − 1) on machine (m) is for operation (o′) of

any one of the sublots of job (j′) then Implement Eq. (4.6) for this j, s, o,m, o′, j′

18: end if
19: end if
20: end for
21: end for
22: end for
23: end for
24: for o(2)→ o(MaximumNumberofOperationsForJob.j) do
25: for m′(1)→ m′(MaximumNumberofMachines) do
26: for r′(1)→ r′(MaximumNumberofRuns) do
27: if run(1) on machine(m) is for operation(o) of sublot (s) of

job (j) then
28: if run(r′) on machine(m′) is for operation(o− 1) of sublot

(s) of job (j) then
Implement Eq. (4.7) for this m, r′,m′, o, s, j

29: end if
30: end if
31: for r(2)→ r(MaximumNumberofRuns) do
32: for j′(1)→ j′(MaximumNumberofJobs) do
33: for o′(1)→ o′(MaximumNumberofOperationsForJob.j′)

do

68

Chapter 4. Solution Procedure

Algorithm 1 Direct approach for formulation and implementation of LP (cont.)

34: if run(r) on machine(m) is for operation(o) of
sublot (s) of job (j) then

35: if run (r − 1) on machine (m) is for operation
(o′) of any one of the sublots of job (j′) then

36: if run(r′) on machine(m′) is for operation(o−
1) of sublot (s) of job (j) then Implement Eq. (4.8) for this r,m, r′,m′, o, s, j, o′, j′

37: end if
38: end if
39: end if
40: end for
41: end for
42: end for
43: end for
44: end for
45: end for
46: end for
47: end for
48: end for

In order to clarify the approach mechanism, assume each job has O number of

operations and S number of sublots, and maximum number of machines, jobs

and runs on the machines are equal to M , J and R, respectively. In this case,

the number of FOR-loops required to impellent all constraints in the solver is

M · J · O · S · (2 + R + J2 · O + R · M + R2 · M · J · O · S). This enormous

amount of loops will considerably increase the computational time, and make LP

embedding entirely ineffectual.

To alleviate the aforementioned difficulty, we tried to use another method in

which the process of implementing the mathematical model is done by reading the

information we need from the genes in a chromosome. In this method, we start

to scan the genes in RHS of the chromosome from left to right in order to obtain

the properties information of every gene. Properties information includes job j,

sublot s, operation o, machine m, and production run r data. After getting the

properties of a gene, the LP constraints based on these information are inserted

into CPLEX solver. We named this approach as an indirect approach. For better

69

Chapter 4. Solution Procedure

understanding of this method, consider the chromosome in Figure 4.2. Based on

this method, the chromosome is scanned from gene g=1 to g=22. Fore gene 1,

the corresponding properties (j=3, s=2, o=1 and m=3) are obtained. Because

this is the first run on machine m=3, all constraints in the LP model except Eq.

(4.6), Eq. (4.7) and Eq. (4.8) are applied to this particular gene. The constraints

in Eq. (4.6), and Eq. (4.8) are not for first run of a machine, and constraint in

Eq. (4.7) is not for first operation of a job.

Algorithm 2 : Indirect approach for formulation and implementation of LP

1: for gene(0)→ gene(TotalNumberOfProcesses) do
2: Obtain job index of gene(g)
3: Obtain sublot index of gene(g)
4: Obtain operation index of gene(g)
5: Obtain job Machine index of gene(g)
6: if Size Index of sublot(s) of job(j)¿ 0 then
7: Update job, sublot and operation indexes of the current run of machine(m)
8: Update machine and run indexes of operation(o) of sublot(s) of job(j)
9: Implement Eq. (4.3) and Eq. (4.4) for this r,m, s, o, j

10: if run counter of machine(m) = 1 then
11: Implement Eq. (4.5) for this m, s, o, j
12: if operation index o > 1 then
13: Updatem′ and r′ , using the machine and run indexes of operation(o−

1) of sublot(s) of job(j)
14: Implement Eq. (4.7) for this m, r′,m′, o, s, j
15: end if
16: else
17: Update o′ and j′ using operation and job indexes of run(r − 1) of

machine(m)
18: Implement Eq. (4.6) for this r,m, o, s, j, o′, j′

19: if operation index o > 0 then
20: Update m′ and r′ using machine and run indexes of operation(o− 1)

of sublot(s) of job(j)
21: Implement Eq. (4.8) for this j, s, o,m
22: end if
23: end if
24: end if
25: run← run+ 1
26: end for

70

Chapter 4. Solution Procedure

This process will repeats for every gene in order to formulate a LP method

based on the GA solution. In comparison with previous approach, this method

tremendously reduce the number of loops we need to formulate the LP model.

For instance, consider small example in Table 4.2, if we assume that maximum

number of runs for every machine is 8 runs, then the number of loops needed

for adding constraints to the solver model by direct approach is equal to 107864

loops. Whereas, the number of loops required in indirect approach is equal to

22 loops. This significant difference in the number of loops for a small problem

implies that in the large problems using second method can considerably re-

duce computational cost and time. The pseudocode in Algorithm 2 describes the

approach which is used in this thesis to implement LP model in CPLEX software.

71

Chapter 5

Numerical Example

5.1. Model illustration

In this section, we provide several numerical examples with the purpose of showing

the advantages of our proposed hybrid GA in comparison with parallel and pure

GA methods. As was stated before, the basic difference between the pure and the

proposed hybrid GA is in the way lot sizes are determined by these two methods.

In order to demonstrate how the application of LP for determining lot sizes has

improved our method, a small example of a lot streaming problem is considered.

This example consists of processing three jobs in a four-machine flexible job-

shop. The batch size of each job and for each operation, the nature of the set

up (attached or detached), lag time, alternative machines, and corresponding

processing times are given in Table 5.1. The sequence-dependent setup time data

are also given in Table 5.2.

This small instance is once solved by the pure GA and once by the pro-

posed hybrid GA, while the job assignment is similar in both solution procedures.

Therefore, the use of this example makes it possible to compare the performance

of the pure GA and that of the proposed hybrid GA in determining the lot sizes.

The sizes of the various sublots and the Gantt charts of the resulting schedules are

72

Chapter 5. Research Outline

given in Figure 5.1. The numerical values of the starting and the ending times of

the set ups and operations are presented in Table 5.3. It can be seen from figure

5.1 that despite having the same job assignments, the proposed method achieved

a better makespan than did the pure GA. When the pure GA is used for lot

streaming, the makespan of this small problem is 22336.3 minutes (Figure 5.1-a).

However, when the problem is solved once more with the same job assignments,

a makespan of 19823.6 minutes is obtained: this is about an 11% reduction in

the makespan from the pure GA results.

Table 5.1: Processing Data for Jobs

Alternative routes, (m, To,j,m)

j Bj o Ao,j Lo,j 1 2 3

1 1240 1 na na (1, 6.00) (3, 5.25)

2 1 0 (1, 4.50) (2, 5.00)

3 0 0 (1, 2.50) (3, 2.75) (4, 2.75)

2 1480 1 na na (3, 5.50) (4, 5.75)

2 1 0 (1, 3.50) (2, 3.25) (4, 3.50)

3 1290 1 na na (1, 4.50) (4, 4.75)

2 1 80 (1, 5.50) (3, 5.75) (4, 5.25)

3 1 0 (1, 6.50) (3, 6.50) (4, 6.75)

na = not applicable

73

Chapter 5. Research Outline

T
ab

le
5.

2:
S

eq
u

en
ce

D
ep

en
d

en
t

S
et

u
p

T
im

e
D

at
a

j
o

m
S

et
u

p
ti

m
e

(S
∗ o,
j,
m

),
··
·

,(
j′

,
o′

,
S
o
,j
,m

,o
′ ,
j
′)
··
·

1
1

1
(1

5
0
),

(1
,1

,8
0
),

(1
,2

,1
6
0
),

(1
,3

,1
6
0
),

(2
,2

,2
7
0
),

(3
,1

,2
7
0
),

(3
,2

,2
4
0
),

(3
,3

,2
1
0
)

3
(2

0
0
),

(1
,1

,8
0
),

(1
,3

,1
6
0
),

(2
,1

,2
1
0
),

(3
,2

,2
4
0
),

(3
,3

,2
1
0
)

2
1

(5
0
),

(1
,1

,1
2
0
),

(1
,2

,6
0
),

(1
,3

,1
4
0
),

(2
,2

,1
5
0
),

(3
,1

,1
8
0
),

(3
,2

,2
4
0
),

(3
,3

,3
0
0
)

2
(1

0
0
),

(1
,2

,8
0
),

(2
,2

,1
8
0
)

3
1

(1
5
0
),

(1
,1

,1
2
0
),

(1
,2

,1
6
0
),

(1
,3

,6
0
),

(2
,2

,2
7
0
),

(3
,1

,2
7
0
),

(3
,2

,2
7
0
),

(3
,3

,2
1
0
)

3
(1

5
0
),

(1
,1

,1
4
0
),

(1
,3

,6
0
),

(2
,1

,1
8
0
),

(3
,2

,2
1
0
),

(3
,3

,2
7
0
)

4
(1

0
0
),

(1
,3

,6
0
),

(2
,1

,2
4
0
),

(2
,2

,1
8
0
),

(3
,1

,2
7
0
),

(3
,2

,2
7
0
),

(3
,3

,2
7
0
)

2
1

3
(2

0
0
),

(1
,1

,1
8
0
),

(1
,3

,3
0
0
),

(2
,1

,7
0
),

(3
,2

,2
4
0
),

(3
,3

,2
7
0
)

4
(1

0
0
),

(1
,3

,2
1
0
),

(2
,1

,7
0
),

(2
,2

,1
6
0
),

(3
,1

,1
8
0
),

(3
,2

,1
8
0
),

(3
,3

,1
8
0
)

2
1

(1
0
0
),

(1
,1

,1
8
0
),

(1
,2

,2
1
0
),

(1
,3

,2
1
0
),

(2
,2

,7
0
),

(3
,1

,1
5
0
),

(3
,2

,3
0
0
),

(3
,3

,1
8
0
)

2
(1

5
0
),

(1
,2

,1
8
0
),

(2
,2

,8
0
)

4
(1

5
0
),

(1
,3

,1
8
0
),

(2
,1

,1
0
0
),

(2
,2

,6
0
),

(3
,1

,2
7
0
),

(3
,2

,2
7
0
),

(3
,3

,2
7
0
)

3
1

1
(1

0
0
),

(1
,1

,2
1
0
),

(1
,2

,2
1
0
),

(1
,3

,2
1
0
),

(2
,2

,2
4
0
),

(3
,1

,8
0
),

(3
,2

,1
8
0
),

(3
,3

,1
8
0
)

4
(1

0
0
),

(1
,3

,2
1
0
),

(2
,1

,2
4
0
),

(2
,2

,2
4
0
),

(3
,1

,6
0
),

(3
,2

,2
0
0
),

(3
,3

,1
2
0
)

2
1

(1
0
0
),

(1
,1

,1
8
0
),

(1
,2

,3
0
0
),

(1
,3

,2
1
0
),

(2
,2

,2
7
0
),

(3
,1

,1
4
0
),

(3
,2

,5
0
),

(3
,3

,1
4
0
)

3
(2

0
0
),

(1
,1

,2
7
0
),

(1
,3

,2
7
0
),

(2
,1

,3
0
0
),

(3
,2

,6
0
),

(3
,3

,1
8
0
)

4
(1

5
0
),

(1
,3

,1
8
0
),

(2
,1

,2
7
0
),

(2
,2

,2
4
0
),

(3
,1

,1
8
0
),

(3
,2

,8
0
),

(3
,3

,1
2
0
)

3
1

(1
0
0
),

(1
,1

,2
7
0
),

(1
,2

,1
8
0
),

(1
,3

,1
5
0
),

(2
,2

,1
8
0
),

(3
,1

,1
6
0
),

(3
,2

,1
6
0
),

(3
,3

,7
0
)

3
(1

0
0
),

(1
,1

,1
8
0
),

(1
,3

,1
8
0
),

(2
,1

,2
7
0
),

(3
,2

,1
8
0
),

(3
,3

,8
0
)

4
(5

0
),

(1
,3

,2
7
0
),

(2
,1

,1
8
0
),

(2
,2

,1
5
0
),

(3
,1

,1
8
0
),

(3
,2

,1
4
0
),

(3
,3

,7
0
)

74

Chapter 5. Research Outline

F
ig

u
re

5.
1:

S
ch

ed
u
le

fo
r

p
ro

b
le

m
-1

:
(a

)
so

lv
ed

b
y

P
u
re

G
A

(b
)

S
ol

ve
d

b
y

P
ro

p
os

ed
H

y
b
ri

d
G

A
N

ot
e:

T
h
e

d
et

ai
le

d
n
u
m

er
ic

al
va

lu
es

of
th

e
st

ar
ti

n
g

an
d

th
e

en
d
in

g
ti

m
es

of
th

e
se

tu
p
s

an
d

th
e

op
er

at
io

n
s

ar
e

gi
ve

n
in

T
ab

le
5.

3.

75

Chapter 5. Research Outline

T
ab

le
5.

3:
T

h
e

d
et

ai
ls

of
th

e
sc

h
ed

u
le

s
sh

ow
n

in
F

ig
u

re
5
.1

S
ol

ve
d

b
y

p
u

re
G

A
S

o
lv

ed
b
y

p
ro

p
o
se

d
h
y
b

ri
d

G
A

M
ac

h
in

e
R

u
n

(j
,s
,o

)
S

B
S

E
/
P

B
P

E
(j
,s
,o

)
S

B
S

E
/
P

B
P

E

M
1

R
1

(1
,2

,2
)

32
35

.6
3
2
8
5
.6

5
8
8
7
.6

(1
,2

,2
)

1
0
8
0

1
1
3
0

1
8
8
4
.3

R
2

(3
,1

,1
)

58
87

.6
6
0
9
7
.6

8
6
2
8
.6

(3
,1

,1
)

1
8
8
4
.3

2
0
9
4
.3

4
6
2
0
.7

R
3

(3
,3

,2
)

86
28

.6
8
7
6
8
.6

1
2
0
1
6
.5

(3
,3

,2
)

1
7
0
2
8
.5

1
7
1
6
8
.5

1
7
8
8
2
.6

M
2

R
1

(1
,3

,2
)

67
90

6
8
9
0

1
0
1
9
8
.9

(1
,3

,2
)

6
7
9
0
.0

6
8
9
0
.0

1
2
2
5
1
.9

R
2

(2
,2

,2
)

13
65

8
.2

1
3
8
3
8
.2

1
7
7
9
0
.4

(2
,2

,2
)

1
4
7
5
3
.6

1
4
9
3
3
.6

1
9
5
3
3

R
3

(2
,3

,2
)

21
39

8
.4

2
1
4
7
8
.4

2
2
3
3
6
.3

(2
,3

,2
)

1
9
5
3
3

1
9
6
1
3

1
9
8
2
3
.6

M
3

R
1

(1
,2

,1
)

0.
0

2
0
0

3
2
3
5
.6

(1
,2

,1
)

0
.0

2
0
0

1
0
8
0

R
2

(1
,3

,1
)

32
35

.6
3
3
1
5
.6

6
7
9
0
.0

(1
,3

,1
)

1
0
8
0

1
1
6
0

6
7
9
0

R
3

(2
,2

,1
)

67
9
0

6
9
7
0

1
3
6
5
8
.2

(2
,2

,1
)

6
7
9
0

6
9
7
0

1
4
7
5
3
.6

R
4

(1
,3

,3
)

13
65

8
.2

1
3
8
3
8
.2

1
5
6
5
8
.1

(1
,3

,3
)

1
4
7
5
3
.6

1
4
9
3
3
.6

1
7
8
8
2
.6

R
5

(3
,3

,3
)

15
65

8
.1

1
5
8
3
8
.1

1
9
6
7
6
.6

(3
,3

,3
)

1
7
8
8
2
.6

1
8
0
6
2
.6

1
8
9
0
6
.6

R
6

(2
,3

,1
)

19
67

6
.6

1
9
9
4
6
.6

2
1
3
9
8
.4

(2
,3

,1
)

1
8
9
0
6
.6

1
9
1
7
6
.6

1
9
5
3
3

M
4

R
1

(3
,3

,1
)

10
80

.0
1
1
8
0
.0

3
9
8
5
.1

(3
,3

,1
)

1
0
8
0

1
1
8
0

1
7
9
6
.7

R
2

(3
,2

,1
)

39
85

.1
4
0
4
5
.1

4
6
9
6

(3
,2

,1
)

1
7
9
6
.7

1
8
5
6
.7

4
7
0
0
.7

R
3

(3
,1

,2
)

87
08

.6
8
8
8
8
.6

1
1
8
4
1
.3

(3
,1

,2
)

4
7
0
0
.7

4
8
8
0
.7

7
8
2
8
.2

R
4

(3
,2

,2
)

11
84

1
.3

1
1
9
2
1
.3

1
2
6
4
0
.7

(3
,2

,2
)

7
8
2
8
.2

7
9
0
8
.2

1
1
0
5
1
.6

R
5

(3
,1

,3
)

12
64

0
.7

1
2
7
8
0
.7

1
6
5
7
7
.1

(3
,1

,3
)

1
1
0
5
1
.6

1
1
1
9
1
.6

1
4
9
8
1
.2

R
6

(3
,2

,3
)

16
57

7
.1

1
6
6
4
7
.1

1
7
5
7
2
.1

(3
,2

,3
)

1
4
9
8
1
.2

1
5
0
5
1
.2

1
9
0
9
2
.6

R
7

(1
,2

,3
)

17
57

2
.1

1
7
8
4
2
.1

1
9
4
3
2
.2

(1
,2

,3
)

1
9
0
9
2
.6

1
9
3
6
2
.6

1
9
8
2
3
.6

N
o
te
:

S
B

,
S

E
,

P
B

,
P

E
st

an
d

fo
r

se
tu

p
b

eg
in

s,
se

tu
p

en
d

s,
p

ro
ce

ss
in

g
b

eg
in

s,
a
n

d
p

ro
ce

ss
in

g
en

d
s,

re
sp

ec
ti

ve
ly

.

76

Chapter 5. Research Outline

5.2. Computational Performance

In this section, a comparison between the convergence behavior and makespan

of pure genetic algorithm (SGA), parallel genetic algorithm (PGA), and the pro-

posed hybrid genetic algorithm (HGA) is presented. In order to illustrate the

improvement attained using the proposed method, problems with much larger

dimensions than Problem 1 (presented in the previous section) are considered.

The general nature of the considered problems is depicted in Table 5.4. In Fig-

ure 5.3(a), provided by Defersha and Chen (2012), convergence behavior of SGA

and PGAs in solving Problem 2 is illustrated. Additionally, in Figure 5.3(b), we

present a comparison between the proposed method and SGA in terms of solving

the same problem. In these figures, each curve represents the average convergence

of the genetic algorithm from 10 test runs with different genetic parameters (Ta-

ble 7). The genetic parameters given in Table 5.5 are generated randomly around

those values with which the algorithm performs well. The initial sets of parame-

ters are chosen following the general guidelines provided by Pezzella et al. (2008)

and other published genetic algorithms.

As can be seen in Figure 5.3(a) , an improvement in the makespan value

and also convergence rate is achieved as the number of processors increases in

parallel computation. On the other hand, as is shown in Figure 5.3(b), with much

less computational cost, the proposed hybrid GA is able to reach the solution

in a manner similar to what is achieved by a 24-subpopulation parallel genetic

algorithm (PGA-24). The parallel genetic algorithms used in this research are

coded in C++ programming language using the MPI message-passing library for

communication. The codes are executed in a parallel computation environment,

composed of more than 250 interconnected workstations, each having an eight-

core Intel Xeon 2.8GHz processor. When solving Problem 2, the sequential genetic

algorithm generates a schedule with a makespan of 5227 minutes, on average. By

increasing the number of the processors to 8, 16, 24, 32, and 48 - the average

77

Chapter 5. Research Outline

makespan of the test runs is reduced by 109, 125, 165, 170, and 183 minutes,

respectively. Our proposed method improves the SGA-generated makespan by

162 minutes using only a five-core Intel 1.7 GHz processor. Moreover, even better

solutions are achieved using the proposed hybrid GA in solving other problems

considered in this paper. As is shown in Figure 5.4, the average convergence

graphs of the pure genetic algorithm (SGA), a 24-subpopulation parallel genetic

algorithm, and proposed hybrid GA in solving Problems 2, 3, 4, and 5, are

compared with each other. These figures demonstrate that our proposed method

achieves a better makespan with a quicker convergence rate than does the 24-

subpopulation parallel genetic algorithm.

Table 5.4: The general nature of the problems considered

Number of Number of Number of

Number of Number of sublots for operations for alternative routes

Problem No. machines jobs each job the jobs for the operation

2 8 20 4 3 to 5 1 to 3

3 12 30 4 3 to 6 1 to 3

4 10 25 4 3 to 4 1 to 3

5 12 35 3 2 to 4 1 to 3

78

Chapter 5. Research Outline

T
ab

le
5.

5:
G

en
et

ic
p

ar
am

et
er

s
u

se
d

fo
r

th
e

te
st

ru
n

s

T
es

t
R

u
n

P
ar

am
et

er
1

2
3

4
5

6
7

8
9

1
0

P
op

u
la

ti
on

S
iz

e
55

00
2
5
0
0

4
5
0
0

3
0
0
0

4
0
0
0

3
5
0
0

2
5
0
0

2
0
0
0

2
8
0
0

3
8
0
0

T
ou

rn
am

en
t

si
ze

fa
ct

or
0.

10
0
.2

0
0
.0

5
0
.0

3
0
.2

0
0
.1

5
0
.1

2
0
.2

5
0
.2

0
.1

5

C
ro

ss
ov

er
p

ro
b

ab
il

it
y

fo
r:

S
P

C
1

ρ
1

0.
85

0
.8

0
.9

5
0
.8

0
0
.7

5
0
.8

0
0
.7

5
0
.9

0
0
.7

0
.8

S
P

C
2

ρ
2

0.
85

0
.8

0
.9

5
0
.8

0
0
.9

0
0
.8

0
0
.7

5
0
.8

0
0
.8

5
0
.8

O
M

A
C

ρ
3

0.
95

0
.8

5
0
.8

0
0
.7

5
0
.7

5
0
.9

0
0
.8

5
0
.7

5
0
.8

5
0
.9

J
L

O
S

C
ρ
4

0.
80

0
.9

0
0
.8

5
0
.9

5
0
.8

0
0
.7

5
0
.8

0
0
.7

0
0
.8

0
.8

5

S
L

O
S

C
ρ
5

0.
90

0
.8

0
0
.8

5
0
.9

0
0
.9

5
0
.9

0
0
.7

5
0
.7

0
0
.9

0
.8

3

M
u

ta
ti

on
p

ro
b

ab
il

it
y

fo
r:

S
S

tM
σ
1

0.
15

0
.1

0
0
.0

5
0
.1

0
0
.0

2
0
.1

0
0
.1

5
0
.1

0
0
.0

2
0
.1

S
S

w
M

σ
2

0.
10

0
.0

8
0
.1

0
0
.1

2
0
.1

0
0
.1

0
0
.2

0
0
.1

5
0
.1

0
.0

5

S
S

D
d

0.
10

0
.1

0
0
.1

0
0
.1

0
0
.1

0
.1

0
0
.1

0
0
.1

0
0
.1

0
.1

R
O

A
M

σ
3

0.
10

0
.0

5
0
.1

0
0
.1

0
0
.0

3
0
.1

0
0
.1

0
0
.1

5
0
.1

0
.1

IO
A

M
σ
4

0.
10

0
.1

2
0
.2

0
0
.1

5
0
.0

5
0
.2

0
0
.1

0
0
.2

5
0
.2

0
.1

O
S

S
M

σ
5

0.
20

0
.1

0
0
.2

5
0
.1

0
0
.0

5
0
.1

0
0
.0

5
0
.1

5
0
.0

6
0
.1

5

79

Chapter 5. Research Outline

5000

5050

5100

5150

5200

5250

5300

5350

5400

0 1000 2000 3000 4000

M
ak

es
p

an
 (

m
in

u
te

s)

Generation

SGA PGA 8 PGA16 PGA 24 PGA 32 PGA48

Figure 5.2: Performance improvement through parallelization of the genetic al-

gorithm as the number of processor is increased from 1 to 8, 16, 24, 32, and to

48.

5000

5050

5100

5150

5200

5250

5300

5350

5400

0 1000 2000 3000 4000

M
ak

es
p

an
 (

m
in

u
te

s)

Generation

SGA GA-FJSP

Figure 5.3: Performance improvement through using the proposed hybrid GA

80

Chapter 5. Research Outline

5
0

0
0

5
1

0
0

5
2

0
0

5
3

0
0

5
4

0
0

5
5

0
0

5
6

0
0

0
1

0
00

20
00

30
00

Makespan (Minutes)

P
ro

b
le

m
 2

SG
A

P
G

A
-2

4

H
G

A

67
00

69
00

71
00

73
00

75
00

77
00

79
00

81
00

83
00

0
1

0
0

0
2

0
0

0
30

00

Makespan (Minutes)

P
ro

b
le

m
 3

SG
A

P
G

A
-2

4

H
G

A

4
0

0
0

4
1

0
0

4
2

0
0

4
3

0
0

4
4

0
0

4
5

0
0

4
6

0
0

4
7

0
0

4
8

0
0

0
1

0
0

0
2

0
0

0
3

0
0

0

Makespan (Minutes)

P
ro

b
le

m
 4 SG

A

P
G

A
-2

4

H
G

A

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

0
10

00
20

00
3

0
0

0

Makespan (Minutes)

P
ro

b
le

m
 5

SG
A

P
G

A
-2

4

H
G

A

F
ig

u
re

5.
4:

A
ve

ra
ge

co
n
ve

rg
en

ce
of

th
e

S
G

A
,

P
G

A
an

d
H

G
A

fo
r

p
ro

b
le

m
s

2,
3,

4,
an

d
5.

81

Chapter 5. Research Outline

5.3. Empirical Study

In this section, the impact of the genetic parameters on SGA and the proposed

HGA performance is compared. Figure 5.5 shows the plots of the makespan of the

schedules obtained after 3000 iterations by SGA and the proposed HGA under

different test runs. The test runs are differentiated by the settings of their genetic

parameters, as is shown in Table 5.5. In Figure 5.5, each pattern represents the

way the final solution quality of the SGA and HGA is affected by the genetic

parameters. It can be seen that the HGA final solutions have more stability

than does the pure GA against changes in the genetic parameters. In the hybrid

approach, 8 from 10 final solutions lie within plus and minus 0.01 of the HGA

final solutions mean. However, in the SGA case, only 5 out of 10 answers lie

within that range. In other words, it can be concluded that in terms of variation

in genetic parameters, our proposed method is more robust than is the pure GA.

4950

5000

5050

5100

5150

5200

5250

5300

5350

5400

1 2 3 4 5 6 7 8 9 10

M
ak

es
p

an
 (

M
in

u
te

s)

Test Run

SGA

HGA

SGA-Mean

HGA Mean

Figure 5.5: The effect of changing genetic parameters on the final solution quality
obtained by the SGA and HGA in solving problem 2

82

Chapter 6

Research Outline

6.1. Summary and Conclusion

This study aimed at minimizing the makespan of lot streaming flexible job shop

problems. The comprehensive problem studied in this thesis takes into account

routing flexibility, sequence-dependent setups, machine release dates and lag time.

In addition, the sublots of products can have attached or detached setup times,

and also are allowed to be intermingled. The considered problem in this thesis

denotes by : FJc, Ln | Somjk, routf , rm, lag, btchls | Tv, FixN , Dc, xPn,Si |

Cmax.

In this thesis, we developed a linear programming assisted genetic algo-

rithm. Linear program is employed as a GA assistant to further improve promis-

ing solutions in the initial population and during the genetic search process by

determining the optimal values of the continuous variables corresponding to the

values of the integer variables of these promising solutions. The method we used

to reduce looping in the hybrid genetic algorithm and the way LP is incorporated

with the GA in the whole solution procedure are two distinctive features of our

novel approach.

A series of numerical examples were used to demonstrate the superiority of

83

Chapter 6. Research Outline

the proposed GA over parallel and pure GA methods. The experiments showed

that the hybridization of the genetic algorithm with the linear programming

greatly improved it convergence behavior. Based on the results, our proposed

algorithm outperformed or performed equally with the resource-intensive parallel

pure genetic algorithm, while it only utilized a single computational resource.

Also, the results showed that our proposed method achieved significantly better

outcomes than the pure genetic algorithm in terms of computational performance.

6.2. Future Research and Recommendations

During the last decades, many efforts have been devoted to applying automated

scheduling to real-world situations. Although a few notable successes have been

achieved, still a significant amount of scheduling tasks which could derive benefit

from automated scheduling are conducted manually. One of the reasons why

many organizations still avoid utilizing automated scheduling is that the majority

of problems which have been studied by researchers over the year are actually the

simplified version of the problems faced by industries. Usually, the constraints

and performance criteria in real-world problems tend to be more complex. For

instance, the well-known job shop and flow shop problems which are extensively

studied by researchers over the years are much easier and less complex than actual

problems in manufacturing industries, and in most cases, they are not applicable

to real-world situations. Therefore, in future works, researchers should emphasize

more on solving the real-life problems rather than focusing only on theory.

Most of the problems in scheduling research are in class of NP-hard prob-

lems. As the size of this kind of problem increases the amount of time required to

solve them increases dramatically. As a result, in order to reduce the computa-

tional time substantially, the guarantee for obtaining an optimal solution should

84

Chapter 6. Research Outline

be sacrificed. This means that there always exists a tradeoff between the solu-

tion quality and the computational time. While many of the parameters of this

tradeoff are user-dependent, the researchers usually only focus on speeding up

their algorithms and reducing computational time. Hence, in future researches,

algorithms should be designed in such a way that the users are capable to make

tradeoffs between solution quality and computational cost.

Moreover, in future works, researchers should work on developing schedulers

which can be configured easily for a wide variety scheduling problems. In this

way, high costs of implementing an automated scheduling for an organization can

be dramatically reduced, and consequently, automated scheduling becomes more

desirable than manual scheduling for industries. Also, most of the organizations

need dynamic rescheduling, where the scheduler software monitors the process

and if necessary adjusts the schedule. This issue should also be addressed in

future works Montana (2002).

85

Bibliography

Aarts, E. E. H. and Lenstra, J. K., 1997. Local search in combinatorial optimiza-

tion. Princeton University Press,

Adams, J., Balas, E., and Zawack, D., 1988. The shifting bottleneck procedure

for job shop scheduling. Management science, 34 (3), 391–401.

Bäck, T., 1996. Evolutionary algorithms in theory and practice: evolution strate-

gies, evolutionary programming, genetic algorithms. Oxford University Press

on Demand,

Bagheri, A., Zandieh, M., Mahdavi, I., and Yazdani, M., 2010. An artificial im-

mune algorithm for the flexible job-shop scheduling problem. Future Generation

Computer Systems, 26 (4), 533–541.

Baker, K. R. and Trietsch, D., 2009. Principles of sequencing and scheduling.

Wiley. com,

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J., 2009. A survey

on metaheuristics for stochastic combinatorial optimization. Natural Comput-

ing: an international journal, 8 (2), 239–287.

Blackburn, J., 1991. Time-Based Competition. Business One Irwin, Burr Ridge,

IL,

86

Bibliography

B lażewicz, J., Ecker, K. H., and Pesch, E., 2007. Handbook on scheduling [elec-

tronic resource]: from theory to applications. Springer,

Blum, C., Puchinger, J., Raidl, G. R., and Roli, A., 2011. Hybrid metaheuristics

in combinatorial optimization: A survey. Applied Soft Computing, 11 (6),

4135–4151.

Blum, C., Roli, A., and Sampels, M., 2008. Hybrid metaheuristics: An emerging

approach to optimization. Vol. 114. Springer,

Bockerstette, J. and Shell, R., 1993. Time Based Manufacturing. McGraw-Hill,

New York,

Bowman, E. H., 1959. The schedule-sequencing problem. Operations Research,

7 (5), 621–624.

Brucker, P., 2007. Scheduling algorithms. Springer,

Brucker, P. and Schlie, R., 1990. Job-shop scheduling with multi-purpose ma-

chines. Computing, 45 (4), 369–375.

Buscher, U. and Shen, L., 2009. An integrated tabu search algorithm for the lot

streaming problem in job shops. European Journal of Operational Research,

199 (2), 385–399.

Buscher, U. and Shen, L., 2011. An integer programming formulation for the lot

streaming problem in a job shop environment with setups. In: Proceedings

of the International MultiConference of Engineers and Computer Scientists.

Vol. 2.

Chan, F., Wong, T., and Chan, P., 2008. Lot streaming for product assembly in

job shop environment. Robotics and Computer-Integrated Manufacturing, 24,

321–331.

87

Bibliography

Chan, F. T., Wong, T., and Chan, L., 2009. The application of genetic algorithms

to lot streaming in a job-shop scheduling problem. International Journal of

Production Research, 47 (12), 3387–3412.

Chan, F. T., Wong, T., and Chan, P., 2004. Equal size lot streaming to job-shop

scheduling problem using genetic algorithms. In: Intelligent Control, 2004.

Proceedings of the 2004 IEEE International Symposium on. IEEE, pp. 472–

476.

Chang, J. H. and Chiu, H. N., 2005. A comprehensive review of lot streaming.

International Journal of Production Research,, 43, 1515–1536.

Chang*, J. H. and Chiu, H. N., 2005. A comprehensive review of lot streaming.

International Journal of Production Research, 43 (8), 1515–1536.

Chaudhry, I. A., Mahmood, S., and Ahmad, R., 2010. Minimizing makespan for

machine scheduling and worker assignment problem in identical parallel ma-

chine models using ga. In: Proceedings of the World Congress on Engineering.

Vol. 3.

Chekuri, C., Khanna, S., and Zhu, A., 2001. Algorithms for minimizing weighted

flow time. In: Proceedings of the thirty-third annual ACM symposium on The-

ory of computing. ACM, pp. 84–93.

Chen, H., Ihlow, J., and Lehmann, C., 1999. A genetic algorithm for flexible job-

shop scheduling. In the proceedings of the 1999 IEEE International Conference

on Robotics & Automation. May 1999, Detroit, Michigan, pp. 1120–1125.

Cheng, M., Mukherjee, N., and Sarin, S., 2013. A review of lot streaming. Inter-

national Journal of Production Research, (ahead-of-print), 1–24.

Cotta, C., Talbi, E.-G., and Alba, E., 2005. 15 parallel hybrid metaheuristics.

Parallel Metaheuristics: A New Class of Algorithms, 47, 347.

88

Bibliography

Dauzere-Peres, S. and Lasserre, J., 1997. Lot streaming in job-shop scheduling.

Operations Research, 45, 584–595.

Dauzère-Pérès, S. and Lasserre, J.-B., 1997. Lot streaming in job-shop scheduling.

Operations Research, 45 (4), 584–595.

Defersha, F. M. and Chen, M., 2009. A coarse-grain parallel genetic algorithm

for flexible job-shop scheduling with lot streaming. In: Computational Science

and Engineering, 2009. CSE’09. International Conference on. Vol. 1. IEEE, pp.

201–208.

Defersha, F. M. and Chen, M., 2010a. A hybrid genetic algorithm for flowshop lot

streaming with setups and variable sublots. International Journal of Production

Research, 48 (6), 1705–1726.

Defersha, F. M. and Chen, M., 2010b. A parallel genetic algorithm for a flexible

job-shop scheduling problem with sequence dependent setups. The Interna-

tional Journal of Advanced Manufacturing Technology, 49 (1-4), 263–279.

Defersha, F. M. and Chen, M., 2012. Jobshop lot streaming with routing flexi-

bility, sequence-dependent setups, machine release dates and lag time. Inter-

national Journal of Production Research, 50 (8), 2331–2352.

Demir, Y. and Kürşat İşleyen, S., 2013. Evaluation of mathematical models for

flexible job-shop scheduling problems. Applied Mathematical Modelling, 37 (3),

977–988.

Drezner, Z. and MisevičIus, A., 2012. Enhancing the performance of hybrid ge-

netic algorithms by differential improvement. Computers & Operations Re-

search, .

Eiselt, H. A. and Sandblom, C.-L., 2004. Decision analysis, location models, and

scheduling problems. Springer,

89

Bibliography

El-Mihoub, T. A., Hopgood, A. A., Nolle, L., and Battersby, A., 2006. Hybrid

genetic algorithms: A review. Engineering Letters, 13 (2), 124–137.

Emmons, H. and Vairaktarakis, G., 2012. Flow shop schedulin. Vol. 182. Springer,

Fattahi, P., Mehrabad, M. S., and Jolai, F., 2007. Mathematical modeling and

heuristic approaches to flexible job shop scheduling problems. Journal of Intel-

ligent Manufacturing, 18 (3), 331–342.

Feldmann, M. and Biskup, D., 2008. Lot streaming in a multiple product per-

mutation flow shop with intermingling. International Journal of Production

Research, 46, 197–216.

Gao, J., Gen, M., and Sun, L., 2006. Scheduling jobs and maintenances in flexible

job shop with a hybrid genetic algorithm. Journal of Intelligent Manufacturing,

17 (4), 493–507.

Gao, J., Sun, L., and Gen, M., 2008. A hybrid genetic and variable neighbor-

hood descent algorithm for flexible job shop scheduling problems. Computers

& Operations Research, 35, 2892–2907.

Garey, M. R., Johnson, D. S., and Sethi, R., 1976. The complexity of flowshop

and jobshop scheduling. Mathematics of Operations Research, 1, 117–129.

Gendreau, M. and Potvin, J.-Y., 2005. Metaheuristics in combinatorial optimiza-

tion. Annals of Operations Research, 140 (1), 189–213.

Ghasemi, M., 2008. Lot streaming in hybrid flow shop scheduling. Ph.D. thesis,

Concordia University.

Glover, F., 1986. Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13 (5), 533–549.

90

Bibliography

Goldberg, D., 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, New York,

Goldberg, D. E., Korb, B., and Deb, K., 1989. Messy genetic algorithms: Moti-

vation, analysis, and first results. Complex systems, 3 (5), 493–530.

Gonçalves, J. F., de Magalhães Mendes, J. J., and Resende, M. G., 2005. A hybrid

genetic algorithm for the job shop scheduling problem. European journal of

operational research, 167 (1), 77–95.

Gonzalez, T. and Sahni, S., 1976. Open shop scheduling to minimize finish time.

Journal of the ACM (JACM), 23 (4), 665–679.

Grabowski, J. and Pempera, J., 2007. The permutation flow shop problem with

blocking. a tabu search approach. Omega, 35 (3), 302–311.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A., 1977. Op-

timization and approximation in deterministic sequencing and scheduling: a

survey. Annals of Discrete Mathematics. v5, , 287–326.

Grosan, C. and Abraham, A., 2007. Hybrid evolutionary algorithms: methodolo-

gies, architectures, and reviews. In: Hybrid evolutionary algorithms. Springer,

pp. 1–17.

Gupta, J. N. and Stafford Jr, E. F., 2006. Flowshop scheduling research after five

decades. European Journal of Operational Research, 169 (3), 699–711.

Hall, N. G. and Sriskandarajah, C., 1996. A survey of machine scheduling prob-

lems with blocking and no-wait in process. Operations research, 44 (3), 510–

525.

Hart, W. E., Krasnogor, N., and Smith, J. E., 2005. Memetic evolutionary algo-

rithms. In: Recent advances in memetic algorithms. Springer, pp. 3–27.

91

Bibliography

Heller, J., 1959. Combinatorial, probabilistic and statistical aspects fo an m x j

scheduling problem. Tech. rep., New York Univ., New York. Atomic Energy

Commission Computing and Applied Mathematics Center.

Holland, J., 1975. Adaptation in natural and artificial systems. University of

Michigan Press, .

ILOG Inc., 2008. CPLEX 12.0 Users Manual. 1080 Linda Vista Ave. Mountain

View, CA 94043, (http://www.ilog.com).

Imanipour, N., 2006. Modeling & solving flexible job shop problem with sequence

dependent setup times. In: Service Systems and Service Management, 2006

International Conference on. Vol. 2. IEEE, pp. 1205–1210.

Jackson, J. R., 1955. Scheduling a production line to minimize maximum tardi-

ness. Tech. rep., DTIC Document.

Johnson, S. M., 1954. Optimal two-and three-stage production schedules with

setup times included. Naval research logistics quarterly, 1 (1), 61–68.

Jourdan, L., Basseur, M., and Talbi, E.-G., 2009. Hybridizing exact methods

and metaheuristics: A taxonomy. European Journal of Operational Research,

199 (3), 620–629.

Kacem, I., 2003. Genetic algorithm for the flexible jobshop scheduling problem.

In the Proceedings of the IEEE International Conference on Systems, Man,

and Cybernetics. Washington, DC, pp. 3464–6469.

Kalir, A. and Sarin, S., 2000. Evaluation of the potential benefits of lot streaming

in flow-shop systems. International Journal of Production Economics, 66, 131–

142.

92

Bibliography

Kan, A., 1976. Machine scheduling problems: classification, complexity and com-

putations. Nijhoff,

URL http://books.google.ca/books?id=-sMSAQAAMAAJ

Khuri, S. and Miryala, S. R., 1999. Genetic algorithms for solving open shop

scheduling problems. In: Progress in Artificial Intelligence. Springer, pp. 357–

368.

Kim, K. and Jeong, I.-J., 2009. Flow shop scheduling with no-wait flexible lot

streaming using an adaptive genetic algorithm. The International Journal of

Advanced Manufacturing Technology, 44 (11-12), 1181–1190.

Kim, K.-H. and Egbelu, P., 1999. Scheduling in a production environment with

multiple process plans per job. International Journal of Production Research,

37 (12), 2725–2753.

Kim, S. and Bobrowski, P., 1994. Impact of sequence-dependent setup time on

job shop scheduling performance. THE INTERNATIONAL JOURNAL OF

PRODUCTION RESEARCH, 32 (7), 1503–1520.

Kochenberger, G. A. et al., 2003. Handbook of metaheuristics. Springer,

Krasnogor, N. and Smith, J., 2005. A tutorial for competent memetic algorithms:

model, taxonomy, and design issues. Evolutionary Computation, IEEE Trans-

actions on, 9 (5), 474–488.

Kumar, S., Bagchi, T., and Sriskandarajah, C., 2000. Lot streaming and schedul-

ing heuristics for m-machine no-wait flow shop. Computers and Industrial En-

gineering, 38, 149–172.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H., and Shmoys, D. B., 1993. Se-

quencing and scheduling: Algorithms and complexity. Handbooks in operations

research and management science, 4, 445–522.

93

http://books.google.ca/books?id=-sMSAQAAMAAJ

Bibliography

Lee, C.-Y., 1996. Machine scheduling with an availability constraint. Journal of

global optimization, 9 (3-4), 395–416.

Lee, C.-Y., 1999. Minimizing makespan on a single batch processing machine with

dynamic job arrivals. International Journal of Production Research, 37 (1),

219–236.

Linn, R. and Zhang, W., 1999. Hybrid flow shop scheduling: a survey. Computers

& Industrial Engineering, 37 (1), 57–61.

Liu, C.-H., Chen, L.-S., and Lin, P.-S., 2013. Lot streaming multiple jobs with

values exponentially deteriorating over time in a job-shop environment. Inter-

national Journal of Production Research, 51 (1), 202–214.

Low, C., Hsu, C., and Huang, K., 2004a. Benefits of lot splitting in job-shop

scheduling. International Journal of Advanced Manufacturing Technology, 24,

773–780.

Low, C., Hsu, C.-M., and Huang, K.-I., 2004b. Benefits of lot splitting in job-shop

scheduling. The International Journal of Advanced Manufacturing Technology,

24 (9-10), 773–780.

Low, C. and Wu, T.-H., 2001. Mathematical modelling and heuristic approaches

to operation scheduling problems in an fms environment. International Journal

of Production Research, 39 (4), 689–708.

Low, C. and Yeh, Y., 2009. Genetic algorithm-based heuristics for an open

shop scheduling problem with setup, processing, and removal times separated.

Robotics and Computer-Integrated Manufacturing, 25 (2), 314–322.

Lozano, M. and Garćıa-Mart́ınez, C., 2010. Hybrid metaheuristics with evolu-

tionary algorithms specializing in intensification and diversification: Overview

and progress report. Computers & Operations Research, 37 (3), 481–497.

94

Bibliography

Manne, A. S., 1960. On the job-shop scheduling problem. Operations Research,

8 (2), 219–223.

Marimuthu, S., Ponnambalam, S. G., and Jawahar, A. N., 2008. Evolutionary

algorithms for scheduling m-machine flow shop with lot streaming. Robotics

and Computer-Integrated Manufacturing, 24, 125–139.

Marimuthu, S., Sait, A. N., et al., 2013. Performance evaluation of proposed

differential evolution and particle swarm optimization algorithms for scheduling

m-machine flow shops with lot streaming. Journal of Intelligent Manufacturing,

24 (1), 175–191.

Martin, C. H., 2009. A hybrid genetic algorithm/mathematical programming

approach to the multi-family flowshop scheduling problem with lot streaming.

OMEGA International Journal of Management Sciences, 37, 126–137.

Melouk, S., Damodaran, P., and Chang, P.-Y., 2004. Minimizing makespan for

single machine batch processing with non-identical job sizes using simulated

annealing. International Journal of Production Economics, 87 (2), 141–147.

Montana, D., 2002. How to make scheduling research relevant. In: Proceedings

of the Genetic and Evolutionary Computation Conference, GECCO. Vol. 2.

Moscato, P., 1989. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Caltech concurrent computation

program, C3P Report, 826, 1989.

Moscato, P., Cotta, C., and Mendes, A., 2004. Memetic algorithms. In: New

optimization techniques in engineering. Springer, pp. 53–85.

Naderi, B., Zandieh, M., and Ghomi, S. F., 2009. Scheduling sequence-dependent

setup time job shops with preventive maintenance. The International Journal

of Advanced Manufacturing Technology, 43 (1-2), 170–181.

95

Bibliography

Osman, I. H. and Laporte, G., 1996. Metaheuristics: A bibliography. Annals of

Operations Research, 63 (5), 511–623.

Pan, Q.-K., Duan, J.-h., Liang, J., Gao, K., and Li, J., 2010. A novel discrete

harmony search algorithm for scheduling lot-streaming flow shops. In: Control

and Decision Conference (CCDC), 2010 Chinese. IEEE, pp. 1531–1536.

Pan, Q.-K., Fatih Tasgetiren, M., Suganthan, P. N., and Chua, T. J., 2011a. A

discrete artificial bee colony algorithm for the lot-streaming flow shop schedul-

ing problem. Information Sciences, 181 (12), 2455–2468.

Pan, Q.-K., Wang, L., Gao, L., and Li, J., 2011b. An effective shuffled frog-leaping

algorithm for lot-streaming flow shop scheduling problem. The International

Journal of Advanced Manufacturing Technology, 52 (5-8), 699–713.

Partheepan, R., 2004. Hybrid genetic algorithms. , .

Pezzella, F., Morganti, G., and Ciaschetti, G., 2008. A genetic algorithm for the

flexible job-shop scheduling problem. Computers and Operations Research, 35,

3202–3212.

Pinedo, M., 2012. Scheduling: theory, algorithms, and systems. Springer,

Potts, C. and Baker, K., 1989. Flow shop scheduling with lot streaming. Opera-

tions Research Letter, 8, 297–303.

Potts, C. N. and Van Wassenhove, L. N., 1992. Integrating scheduling with batch-

ing and lot-sizing: a review of algorithms and complexity. Journal of the Op-

erational Research Society, , 395–406.

Puchinger, J. and Raidl, G. R., 2005. Combining metaheuristics and exact algo-

rithms in combinatorial optimization: A survey and classification. In: Artificial

intelligence and knowledge engineering applications: a bioinspired approach.

Springer, pp. 41–53.

96

Bibliography

Qian, B., Wang, L., Huang, D.-x., Wang, W.-l., and Wang, X., 2009. An effective

hybrid de-based algorithm for multi-objective flow shop scheduling with limited

buffers. Computers & Operations Research, 36 (1), 209–233.

Raidl, G. R., 2006. A unified view on hybrid metaheuristics. In: Hybrid Meta-

heuristics. Springer, pp. 1–12.

Rayward-Smith, V. J., Osman, I. H., Reeves, C. R., and Smith, G. D., 1996.

Modern heuristic search methods. Wiley Chichester,

Reiter, S., 1966. A system for managing job shop production. Journal of Business,

34, 371–393.

Reza Hejazi, S. and Saghafian, S., 2005. Flowshop-scheduling problems with

makespan criterion: a review. International Journal of Production Research,

43 (14), 2895–2929.

Ribas, I., Leisten, R., and Framiñan, J. M., 2010. Review and classification of

hybrid flow shop scheduling problems from a production system and a solutions

procedure perspective. Computers & Operations Research, 37 (8), 1439–1454.

Ribeiro, C. and Hansen, P., 2002. Essays and surveys in metaheuristics. Kluwer

Academic Publishers,

Ronconi, D. P., 2004. A note on constructive heuristics for the flowshop problem

with blocking. International Journal of Production Economics, 87 (1), 39–48.

Roshanaei, V., Azab, A., and ElMaraghy, H., 2013. Mathematical modelling

and a meta-heuristic for flexible job shop scheduling. International Journal of

Production Research, 51 (20), 6247–6274.

Rossi, A. and Dini, G., 2007. Flexible job-shop scheduling with routing flexibility

and separable setup times using ant colony optimisation method. Robotics and

Computer-Integrated Manufacturing, 23 (5), 503–516.

97

Bibliography

Ruiz, R., Şerifoǧlub, F. S., and Urlings, T., 2008. Modeling realistic hybrid flexible

flowshop scheduling problems. Computers & Operations Research, 35, 1151–

1175.

Saidi, M. and Fattahi, P., 2007. Flexible job shop scheduling with tabu search

algorithm. International Journal of Advanced Manufacturing Technology, 35,

563–570.

Sarin, S. C. and Jaiprakash, P., 2007. Flow shop lot streaming. Springer,

Sivanandam, S. and Deepa, S., 2007. Introduction to genetic algorithms. Springer,

Smith, W. E., 1956. Various optimizers for single-stage production. Naval Re-

search Logistics Quarterly, 3 (1-2), 59–66.

Stecke, K. E. and Raman, N., 1995. Fms planning decisions, operating flexibilities,

and system performance. Engineering Management, IEEE Transactions on,

42 (1), 82–90.

Talbi, E.-G., 2002. A taxonomy of hybrid metaheuristics. Journal of heuristics,

8 (5), 541–564.

Tseng, C. T. and Liao, C. J., 2008. A discrete particle swarm optimization for

lot-streaming flowshop scheduling problem. European Journal of Operational

Research, 191, 360–373.

van den Akker, J. M., Hoogeveen, J. A., and van de Velde, S. L., 1999. Parallel

machine scheduling by column generation. Operations Research, 47 (6), 862–

872.

Ventura, J. A. and Yoon, S.-H., 2012. A new genetic algorithm for lot-streaming

flow shop scheduling with limited capacity buffers. Journal of Intelligent Man-

ufacturing, , 1–12.

98

Bibliography

Wagner, H. M., 1959. An integer linear-programming model for machine schedul-

ing. Naval Research Logistics Quarterly, 6 (2), 131–140.

Wang, Y. M., Yin, H. L., and Da Qin, K., 2013. A novel genetic algorithm for flex-

ible job shop scheduling problems with machine disruptions. The International

Journal of Advanced Manufacturing Technology, , 1–10.

Wong, T. and Ngan, S.-C., 2013. A comparison of hybrid genetic algorithm and

hybrid particle swarm optimization to minimize makespan for assembly job

shop. Applied Soft Computing, 13 (3), 1391–1399.

Xia, W. and Wu, Z., 2005. An effective hybrid optimization approach for multi-

objective flexible job-shop scheduling problems. Computers & Industrial Engi-

neering, 48 (2), 409–425.

Yen, J., Randolph, D., Liao, J. C., and Lee, B., 1995. A hybrid approach to

modeling metabolic systems using genetic algorithm and simplex method. In:

Artificial Intelligence for Applications, 1995. Proceedings., 11th Conference on.

IEEE, pp. 277–283.

Yi, H., Duan, Q., and Liao, T., 2012. Three improved hybrid metaheuristic algo-

rithms for engineering design optimization. Applied Soft Computing, .

Yoon, S.-H. and Ventura, J. A., 2002. An application of genetic algorithms to

lot-streaming flow shop scheduling. IIE Transactions, 34 (9), 779–787.

Zhang, G., Gao, L., and Shi, Y., 2011. An effective genetic algorithm for the

flexible job-shop scheduling problem. Expert Systems with Applications, 38 (4),

3563–3573.

Zipkin, P. H., 1986. Models for design and control of stochastic, multi-item batch

production systems. Operations Research, 34 (1), 91–104.

99

	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS
	LIST OF ACRONYMS
	1 Introduction
	1.1 Machine Scheduling
	1.1.1 Machine environment
	1.1.2 Job and resource characteristics
	1.1.3 Optimality criteria in scheduling problems

	1.2 Lot streaming
	1.3 Lot streaming terminology
	1.4 A classification scheme
	1.5 Research in this thesis
	1.6 Organization of the thesis

	2 Literature Review
	2.1 Introduction
	2.2 Hybrid metaheuristics
	2.2.1 Hybridization of evolutionary algorithms
	2.2.2 Hybrid genetic algorithm

	2.3 Machine scheduling problems
	2.3.1 Flow shop scheduling with lot streaming
	2.3.2 Job shop scheduling with lot streaming

	2.4 Concluding Remarks

	3 Mathematical Model
	3.1 Preliminary study
	3.1.1 Notations for introductory mathematical models
	3.1.2 Sequence-position variable based models for FJSP
	3.1.3 Precedence variable based models for FJSP
	3.1.4 Time-indexed models for FJSP
	3.1.5 FJSP model with sequence-dependent setup time

	3.2 Problem Description and Notations
	3.3 MILP Model for FJSP-LS

	4 The Proposed Algorithm
	4.1 Pure Genetic Algorithm
	4.1.1 Selection operator
	4.1.2 Crossover operators
	4.1.3 Mutation operators
	4.1.4 Fitness evaluation in pure GA

	4.2 Linear Programming Subproblem
	4.3 Steps of the Algorithm
	4.4 Implementation Techniques

	5 Numerical Example
	5.1 Model illustration
	5.2 Computational Performance
	5.3 Empirical Study

	6 Research Outline
	6.1 Summary and Conclusion
	6.2 Future Research and Recommendations

	Bibliography

